Research Methods in Psychology
This page intentionally left blank
Tenth Edition

Research Methods in Psychology

John J. Shaughnessy
Hope College

Eugene B. Zechmeister
Loyola University of Chicago

Jeanne S. Zechmeister

McGraw Hill Education
Brief Contents

Preface xiii

PART I

General Issues
1 Introduction 2
2 The Scientific Method 27
3 Ethical Issues in the Conduct of Psychological Research 58

PART II

Descriptive Methods 91
4 Observation 92
5 Survey Research 135

PART III

Experimental Methods 177
6 Independent Groups Designs 178
7 Repeated Measures Designs 219
8 Complex Designs 243

PART IV

Applied Research 275
9 Single-Case Research Designs 276
10 Quasi-Experimental Designs and Program Evaluation 304

PART V

Analyzing and Reporting Research 341
11 Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation 342
12 Data Analysis and Interpretation: Part II. Tests of Statistical Significance and the Analysis Story 379
13 Communication in Psychology 417

Appendix Statistical Tables 437

Glossary 442
References 451
Credits 470
Name Index 473
Subject Index 479
Contents

INDIRECT (UNOBTRUSIVE) OBSERVATIONAL METHODS 106
Physical Traces 107
Archival Records 109
RECORDING BEHAVIOR 112
Comprehensive Records of Behavior 113
Selected Records of Behavior 114
ANALYSIS OF OBSERVATIONAL DATA 118
Qualitative Data Analysis 118
Quantitative Data Analysis 120
THINKING CRITICALLY ABOUT OBSERVATIONAL RESEARCH 124
Influence of the Observer 125
Observer Bias 129
SUMMARY 131
KEY CONCEPTS 132
REVIEW QUESTIONS 132
CHALLENGE QUESTIONS 133
ANSWER TO STRETCHING EXERCISE 134
ANSWER TO CHALLENGE QUESTION I 134

5 Survey Research 135
OVERVIEW 136
USES OF SURVEYS 136
CHARACTERISTICS OF SURVEYS 138
SAMPLING IN SURVEY RESEARCH 138
Basic Terms of Sampling 138
Approaches to Sampling 140
SURVEY METHODS 144
Mail Surveys 145
Personal Interviews 146
Telephone Interviews 147
Internet Surveys 148
SURVEY-RESEARCH DESIGNS 151
Cross-Sectional Design 151
Successive Independent Samples Design 152
Longitudinal Design 154
QUESTIONNAIRES 158
Questionnaires as Instruments 158
Reliability and Validity of Self-Report Measures 160
Constructing a Questionnaire 162
THINKING CRITICALLY ABOUT SURVEY RESEARCH 168
Correspondence Between Reported and Actual Behavior 168

Correlation and Causality 169
SUMMARY 171
KEY CONCEPTS 173
REVIEW QUESTIONS 173
CHALLENGE QUESTIONS 174
ANSWER TO STRETCHING EXERCISE I 175
ANSWER TO STRETCHING EXERCISE II 176
ANSWER TO CHALLENGE QUESTION I 176

PART III
Experimental Methods 177

6 Independent Groups Designs 178
OVERVIEW 179
WHY PSYCHOLOGISTS CONDUCT EXPERIMENTS 179
LOGIC OF EXPERIMENTAL RESEARCH 180
RANDOM GROUPS DESIGN 181
An Example of a Random Groups Design 182
Block Randomization 188
Threats to Internal Validity 189
ANALYSIS AND INTERPRETATION OF EXPERIMENTAL FINDINGS 195
The Role of Data Analysis in Experiments 195
Describing the Results 197
Confirming What the Results Reveal 200
What Data Analysis Can’t Tell Us 204
ESTABLISHING THE EXTERNAL VALIDITY OF EXPERIMENTAL FINDINGS 205
MATCHED GROUPS DESIGN 209
NATURAL GROUPS DESIGN 211
SUMMARY 213
KEY CONCEPTS 215
REVIEW QUESTIONS 215
CHALLENGE QUESTIONS 216
ANSWER TO STRETCHING EXERCISE I 218
ANSWER TO STRETCHING EXERCISE II 218
ANSWER TO CHALLENGE QUESTION I 218

7 Repeated Measures Designs 219
OVERVIEW 220
WHY RESEARCHERS USE REPEATED MEASURES DESIGNS 220
THE ROLE OF PRACTICE EFFECTS IN REPEATED MEASURES DESIGNS 222
Defining Practice Effects 222
Balancing Practice Effects in the Complete Design 224
Balancing Practice Effects in the Incomplete Design 228

DATA ANALYSIS OF REPEATED MEASURES DESIGNS 233
Describing the Results 233
Confirming What the Results Reveal 235

THE PROBLEM OF DIFFERENTIAL TRANSFER 237
SUMMARY 238
KEY CONCEPTS 240
REVIEW QUESTIONS 240
CHALLENGE QUESTIONS 240
ANSWER TO STRETCHING EXERCISE 241
ANSWER TO CHALLENGE QUESTION 1 242

8 Complex Designs 243
OVERVIEW 244
DEscribing effects in a complex design 244
An Example of a 2 × 2 Design 245
Main Effects and Interaction Effects 247
Describing Interaction Effects 251
Complex Designs with Three Independent Variables 253

ANALYSIS OF COMPLEX DESIGNS 255
Analysis Plan with an Interaction Effect 257
Analysis Plan with No Interaction Effect 260
INTERPRETING INTERACTION EFFECTS 262
Interaction Effects and Theory Testing 262
Interaction Effects and External Validity 263
Interaction Effects and Ceiling and Floor Effects 265
Interaction Effects and the Natural Groups Design 266
SUMMARY 269
KEY CONCEPTS 270
REVIEW QUESTIONS 270
CHALLENGE QUESTIONS 271
ANSWER TO STRETCHING EXERCISE I 272

PART IV
Applied Research 275

9 Single-Case Research Designs 276
OVERVIEW 277
THE CASE STUDY METHOD 278
Characteristics 278
Advantages of the Case Study Method 282
Disadvantages of the Case Study Method 285
Thinking Critically About Testimonials Based on a Case Study 287

SINGLE-CASE (SMALL-n) EXPERIMENTAL DESIGNS 288
Characteristics of Single-Case Experiments 289
Specific Experimental Designs 291
Problems and Limitations Common to All Single-Case Designs 297
SUMMARY 300
KEY CONCEPTS 301
REVIEW QUESTIONS 301
CHALLENGE QUESTIONS 301
ANSWER TO STRETCHING EXERCISE 302
ANSWER TO CHALLENGE QUESTION 1 303

10 Quasi-Experimental Designs and Program Evaluation 304
OVERVIEW 305
TRUE EXPERIMENTS 306
Characteristics of True Experiments 306
Obstacles to Conducting True Experiments in Natural Settings 307
Threats to Internal Validity Controlled by True Experiments 309
Problems That Even True Experiments May Not Control 314

QUASI-EXPERIMENTS 316
The Nonequivalent Control Group Design 318
Nonequivalent Control Group Design: The Langer and Rodin Study 319
Threats to Internal Validity in the Nonequivalent Control Group Design 321
The Issue of External Validity 325
Interrupted Time-Series Designs 326
Time Series with Nonequivalent Control Group 330

PROGRAM EVALUATION 331
SUMMARY 336
KEY CONCEPTS 337
REVIEW QUESTIONS 337
CHALLENGE QUESTIONS 338
ANSWER TO STRETCHING EXERCISE 339
ANSWER TO CHALLENGE QUESTION 1 340

PART V
Analyzing and Reporting Research 341

11 Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation 342
OVERVIEW 343
THE ANALYSIS STORY 344
COMPUTER-ASSISTED DATA ANALYSIS 345
ILLUSTRATION: DATA ANALYSIS FOR AN EXPERIMENT COMPARING MEANS 346
Stage 1: Getting to Know the Data 347
Stage 2: Summarizing the Data 351
Stage 3: Using Confidence Intervals to Confirm What the Data Reveal 356

ILLUSTRATION: DATA ANALYSIS FOR A CORRELATIONAL STUDY 367
Stage 1: Getting to Know the Data 368
Stage 2: Summarizing the Data 368
Stage 3: Constructing a Confidence Interval for a Correlation 373
SUMMARY 373
KEY CONCEPTS 375
REVIEW QUESTIONS 375
CHALLENGE QUESTIONS 376

12 Data Analysis and Interpretation: Part II. Tests of Statistical Significance and the Analysis Story 379
OVERVIEW 380
NULL HYPOTHESIS SIGNIFICANCE TESTING (NHST) 380
EXPERIMENTAL SENSITIVITY AND STATISTICAL POWER 384
NHST: COMPARING TWO MEANS 386
Independent Groups 387
Repeated Measures Designs 387
STATISTICAL SIGNIFICANCE AND SCIENTIFIC OR PRACTICAL SIGNIFICANCE 388
RECOMMENDATIONS FOR COMPARING TWO MEANS 389
REPORTING RESULTS WHEN COMPARING TWO MEANS 390
DATA ANALYSIS INVOLVING MORE THAN TWO CONDITIONS 392
ANOVA FOR SINGLE-FACTOR INDEPENDENT GROUPS DESIGN 392
Calculating Effect Size for Designs with Three or More Independent Groups 398
Assessing Power for Independent Groups Designs 399
Comparing Means in Multiple-Group Experiments 400
REPEATED MEASURES ANALYSIS OF VARIANCE 403
TWO-FACTOR ANALYSIS OF VARIANCE FOR INDEPENDENT GROUPS DESIGNS 407
Analysis of a Complex Design with an Interaction Effect 407
Analysis with No Interaction Effect 409
Effect Sizes for Two-Factor Design with Independent Groups 410
ROLE OF CONFIDENCE INTERVALS IN THE ANALYSIS OF COMPLEX DESIGNS 410
TWO-FACTOR ANALYSIS OF VARIANCE FOR A MIXED DESIGN 411
<table>
<thead>
<tr>
<th>Reporting Results of a Complex Design</th>
<th>413</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>413</td>
</tr>
<tr>
<td>Key Concepts</td>
<td>414</td>
</tr>
<tr>
<td>Review Questions</td>
<td>415</td>
</tr>
<tr>
<td>Challenge Questions</td>
<td>415</td>
</tr>
<tr>
<td>Answer to Stretching Exercise</td>
<td>416</td>
</tr>
<tr>
<td>Answer to Challenge Question 1</td>
<td>416</td>
</tr>
</tbody>
</table>

13 Communication in Psychology 417

<table>
<thead>
<tr>
<th>Introduction</th>
<th>418</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Internet and Research</td>
<td>420</td>
</tr>
<tr>
<td>Guidelines for Effective Writing</td>
<td>421</td>
</tr>
<tr>
<td>Structure of a Research Report</td>
<td>423</td>
</tr>
<tr>
<td>Title Page</td>
<td>424</td>
</tr>
<tr>
<td>Abstract</td>
<td>424</td>
</tr>
<tr>
<td>Introduction</td>
<td>425</td>
</tr>
</tbody>
</table>

Method 427
Results 427
Discussion 431
References 432
Footnotes 433
Appendices 434

Oral Presentations 434
Research Proposals 435

Appendix: Statistical Tables 437

Glossary 442
References 451
Credits 470
Name Index 473
Subject Index 479
About the Authors

JOHN J. SHAUGHNESSY is Professor of Psychology at Hope College, a relatively small, select, undergraduate liberal arts college in Holland, Michigan. After completing the B.S. degree at Loyola University of Chicago in 1969, he received the Ph.D. in 1972 from Northwestern University. He is a Fellow of the Association for Psychological Science and the Midwestern Psychological Association. His recent research has focused on practical aspects of memory. He is coauthor, with Benton J. Underwood, of Experimentation in Psychology (Wiley, 1975). Students selected him as the Hope Outstanding Professor Educator in 1992 and he received the Janet L. Andersen Excellence in Teaching Award from the college in 2008.

EUGENE B. ZECHMEISTER is Professor Emeritus of Psychology at Loyola University of Chicago, a large metropolitan university where he taught both undergraduate and graduate courses since 1970. Professor Zechmeister completed his B.A. degree in 1966 at the University of New Mexico. He later received both the M.S. (1968) and Ph.D. (1970) from Northwestern University. A specialist in the field of human cognition and experimental methodology, Professor Zechmeister has co-authored books on human memory, critical thinking, statistics and research methods. He has been a Fellow both of the American Psychological Association (Divisions 1, 2, and 3) and the Association for Psychological Science. In 1994 he was awarded the Loyola University Sujack Award for Teaching Excellence in the College of Arts and Sciences.

JEANNE S. ZECHMEISTER was a member of the Psychology faculty at Loyola University of Chicago from 1990 to 2002. Professor Zechmeister completed her B.A. at University of Wisconsin-Madison (1983) and her M.S. (1988) and Ph.D. (1990) in Clinical Psychology at Northwestern University. She taught undergraduate and graduate courses in research methodology, and her research focused on psychological processes associated with forgiveness. Her effectiveness as a teacher is evidenced by her many years of high teacher ratings and by her being identified consistently each year by graduating seniors as one of their best teachers at Loyola. Dr. Zechmeister now writes in Charlottesville, Virginia.
To Paula
(J.J.S.)

To the Memory of Ruth O'Keane,
James O'Keane,
Kathleen O'Keane Zechmeister,
and My Mother
(E.B.Z.)

To the Memory of
My Father, Harold W. Sumi
(J.S.Z.)
Preface

In this tenth edition we continue to strive to meet the goals we set for our earlier editions: to provide an introduction to research methods in psychology that both excites students about the research process and helps them to become competent practitioners of research methods. Good organization of topics and clearly written text can help develop competency, but igniting students’ enthusiasm about the research process is another matter. An enthusiastic instructor is the key, but we believe we can help. Our approach is to engage students by illustrating how the methods we describe are used to advance knowledge of behavior. To this end, we draw on recent and (hopefully) interesting psychology-related research, citing examples from such diverse sources as Developmental Psychology; Journal of Personality and Social Psychology; Ethology; Psychological Science; Law and Human Behavior; Science; Journal of Cross-Cultural Psychology; Preventive Medicine; The Sports Psychologist; Cyberpsychology, Behavior & Social Networking; Perspectives on Psychological Science, and many others. For those who are new to this textbook we begin by reviewing the basic organization, pedagogical aids, and major features. Those who have used the previous edition may want to go directly to “Changes in This Edition.”

Organization and Approach

Our approach is based on our years of teaching experience. As instructors of research methods, we recognize that most students in our classes will be consumers of research and not producers of research. Students who choose to take on either role will benefit from developing critical thinking skills. We believe that we can best help our students think critically by taking a problem-solving approach to the study of research methods. As Sharon Begley, writer for Newsweek, commented in an essay critiquing science education: “Science is not a collection of facts but a way of interrogating the world.” Moreover, “The most useful skill we could teach is the habit of asking oneself and others, how do you know?” (Newsweek, November 8, 2010, p. 26).

Researchers begin with a good question and then select a research method that can best help them answer their question. The sometimes painstaking task of gathering evidence is only the beginning of the research process. Analyzing and interpreting the evidence are equally important in making claims about psychological processes. Researchers (and students) must analyze the strengths and weaknesses of the method they have chosen in order to be able to evaluate critically the nature of the evidence they have obtained.

Another feature that we continue from our last edition is the website designed for our book. There are interactive exercises and quizzes for students to test their knowledge of text material, as well as links to other important psychology websites. Instructors will find the instructor’s manual and lecture/discussion
PREFACE

As has been our approach for each edition, students learn that a multimethod approach to answering questions will best advance the science of psychology and that one goal of this book is to “fill their toolbox” with strategies for conducting research. Thus, our organization following the introductory chapters is in terms of “methods,” moving from the simplest of observational techniques to complex experimental designs. We remain sensitive to ethical issues in psychological research and to the dilemmas researchers face when they study animal or human behavior. To emphasize our concern we give “ethics” its own chapter (Chapter 3) but also discuss specific ethical issues in other chapters as they relate to particular methodologies.

We believe that research methods are best taught in the context of published psychological research. Thus, we continue to use the rich psychology literature to provide examples of ways in which researchers actually use the methods we discuss. It is always fun for us to update the research examples, while continuing to include important “classic” findings and studies that have proved effective in helping students learn research methods. We believe that one way to motivate students to join us on this exciting path of pursuing knowledge is to show the “payoff” that psychological research provides.

Pedagogical aids include bullet points and Key Concepts within the chapters, and Review Questions at the end of chapters to help students see clearly the points we think are most important for them to learn. And we continue to rely on the Challenge Questions at the end of chapters to help students learn to apply the principles they have learned. Building on the model of the Challenge Questions, we have embedded Stretching Exercises in most chapters to allow students to apply research principles while they are learning about the principles. An extensive review of statistics remains at the end of the book (Chapters 11 and 12), and we continue to introduce these issues briefly in the appropriate places in the text. One way this is done is through a pedagogical aid we call “Stat Tips,” which draws students’ attention to questions of statistical analysis. In some cases we answer those questions for students; in other instances we refer them to material in Chapters 11 and 12. We believe our approach provides important flexibility that allows instructors to decide when and how they will cover statistics in a research methods course.

CHANGES IN THIS EDITION

- As with every revision, we work to improve the clarity of our presentation. Minor changes in sentence wording or paragraph structure make our presentation more concise and easier for students to understand.
- The basic methodologies of scientific psychology change little from year to year; however, research trends, techniques for data collection, research findings, and critical discussion topics constantly shift. In this edition we include dozens of recently published research findings reflecting new trends and techniques, as well as descriptions of important contemporary
issues in scientific psychology. This tenth edition contains more than 100 new references, the majority published since 2010.

- Some have characterized psychology as a science of “WEIRDOs” because researchers chiefly draw participants from Western, Educated, Industrialized, Rich, and Democratic countries (Jones, 2010; see Chapter 1). Even within these countries many groups, such as women, minorities, and immigrants, have been largely ignored over the years. Things are changing, however. Periodicals like the *Journal of Latina/o Psychology* bring psychological research to these communities and reflect an increasing trend in cross-cultural research. For example, we look at Robert Levine’s cross-cultural studies of “helping behavior” and a subsequent correlational analysis of helping behavior in embedded cultures (see Knafo, Schwartz, & Levine, 2009, in Chapter 2). In Chapter 4 we describe research carried out by Nairán Ramírez-Esparza on language differences among Mexican and American students. Psychology is becoming more international; so too are the studies we cite.

- Today’s researcher has access to millions of potential participants via the Internet. Online access has been especially important for survey researchers. In Chapter 5 we provide pointers for students interested in conducting online surveys.

- At the same time, online behavior itself is of interest to many researchers. Social networking sites and chat rooms are mined by social and personality psychologists, often through some form of participant observation (see Chapter 4). The emergence of cyberpsychology journals speaks to this new trend in psychological research.

- Gathering data frequently relies on sophisticated techniques and devices. One example is the electronically activated recorder (EAR) employed by James Pennebaker, Matthias Mehl, Nairán Ramírez-Esparza, and their colleagues to study language behavior, happiness, and behavioral health (see Chapter 4). In Chapter 7 we illustrate how digitally morphed photographs made to look similar to individuals’ romantic partners reveal gender differences in first impressions (Günaydin, Zayas, Selcuk, & Hazan, 2012).

- As in earlier editions, we emphasize ethical concerns with the research enterprise by devoting a complete chapter to this topic (Chapter 3), but continue this conversation when specific methods are introduced. In this edition we highlight Jerry Burger’s “replication” of Stanley Milgram’s well-known studies in order to show how researchers work within ethical guidelines to protect human participants. Many online studies raise serious ethical issues. So, too, do observations using electronic techniques like EAR, and we discuss these issues.

Some minor changes should also be mentioned.

- In Chapter 1 we speak more appropriately of ethnocentric bias rather than simply ethnocentrism.
In Chapter 6 we now use the term matching variable rather than matching task in our discussion of matched groups designs.

In Chapter 9 we replaced the term single-subject design with single-case research design to bring us in line with contemporary usage (e.g., Kazdin, 2011). The chapter is now titled Single-Case Research Designs and, as in previous editions, includes discussion of both case studies and single-case experiments. We are aware that Chapter 9 does not always find its way into an instructor’s syllabus. However, we believe the topics therein are important, especially because many undergraduates seek careers in applied psychology. We describe the many pitfalls when relying on a single case for making causal inferences, a circumstance often witnessed when research findings are presented in the popular media.

In this edition we’ve inserted new “boxes” with information designed to pique students’ interest in research topics. For example, in Chapter 9 we describe the work of Stacy Lopresti-Goodman and her colleagues to document the psychological devastation to orphaned chimpanzees caused by the pet- and bushmeat-trade and in Chapter 10 we describe statistical regression in the context of the “Sports Illustrated jinx.”

The Langer and Rodin (1976) classic quasi-experiment involving a responsibility manipulation within a nursing-home setting remains the foundation of our discussion of quasi-experimental designs in Chapter 10. To this, however, we’ve added contemporary time-series designs that investigate the aftermath of the September 11, 2001 terrorist attacks (Peterson & Seligman, 2003), and the effects of a city-wide smoking ban on health outcomes (Khuder et al., 2007). Our discussion of program evaluation in this chapter considers the evaluation of large-scale social programs such as Medicare.

Finally, many Challenge Questions have been replaced with the goal of updating research examples and using questions that relate back to research findings discussed in each chapter. Should instructors be looking for a missing favorite, be assured it can be found in the Instructor’s Manual.

Online Learning Center

The tenth edition of Research Methods in Psychology is accompanied by student and instructor supplements available at www.mhhe.com/shaughnessy10e. These resources, created by Shaughnessy, Zechmeister, and Zechmeister to augment the text material, have been updated for the tenth edition by coauthor Jeanne Zechmeister.

For Students

Multiple choice, true or false, and matching quizzes, along with problems and exercises can be used as study aids or submitted to instructors as homework exercises. Students also have access to learning objectives, a glossary, and online resources for each chapter.
For Instructors

The following resources are available to instructors using *Research Methods in Psychology*. Contact your local McGraw-Hill sales representative to obtain a password to access the online instructor materials.

Instructor’s Manual to Accompany Research Methods in Psychology The updated manual includes chapter outlines and objectives, chapter review questions and answers, challenge questions and answers, issues and problems for class discussion, activities regarding how to read research critically, worksheets for students, classroom and homework projects, lecture and discussion aids for instructors, and pages that can be used in PowerPoint slides or study guides.

PowerPoint Presentations PowerPoint slides for each chapter outline the key points of the chapter.

Test Banks Test banks for each chapter include short answer and multiple choice questions and answers to test students’ knowledge. Each question is keyed according to whether the question assesses factual or conceptual understanding, or application of methodological concepts. The test bank is also available with EZ Test computerized testing software. EZ Test provides a powerful, easy-to-use test maker to create printed quizzes and exams. For secure online testing, exams created in EZ Test can be exported to WebCT, Blackboard, and EZ Test Online. EZ Test comes with a Quick Start Guide; once the program is installed users have access to a User’s Manual and Flash tutorials. Additional help is available at www.mhhe.com/eztest

COURSESmart

This text is available as an eTextbook at www.CourseSmart.com. At CourseSmart your students take advantage of significant savings off the cost of the print book, reduce their impact on the environment, and gain access to powerful Web tools for learning. CourseSmart eTextbooks can be viewed online or downloaded to a computer. The eTextbooks allow students to do full text searches, add highlighting and notes, and share notes with classmates.

Customize your course with CREATE!

Craft your teaching resources to match the way you teach with McGraw-Hill’s custom publishing program.

How to Use Create:

- **Find** and choose the content you want, or add your own.
- **Arrange** your content to match the way you teach the course. Edit and update your course materials as often as you like.
- **Personalize** your book by selecting a cover and choosing a format option for your students—print or eBook. Review a PDF copy of your book in minutes, or a print copy in just a few days.
WORDS OF THANKS

The cumulative contributions of many people to the tenth edition of our textbook are impossible to acknowledge adequately. Most recently we wish to thank the following reviewers, as well as offer our regrets if we were not able to incorporate all of their suggested changes: Jane Ashby (Central Michigan University), Austin Baldwin (Southern Methodist University), Nida Bikmen (Denison University), Nicole McCray (The University of Montana), and Adriane Seiffert (Vanderbilt University). We also wish to thank Liz Zechmeister, Andy Apodaca, and Emil Posavac for providing helpful information on several research topics.

John J. Shaughnessy
Eugene B. Zechmeister
Jeanne S. Zechmeister
CHAPTER ONE

Introduction

CHAPTER OUTLINE

THE SCIENCE OF PSYCHOLOGY

SCIENCE IN CONTEXT
Historical Context
Social and Cultural Context
Moral Context

THINKING LIKE A RESEARCHER
Evaluating Research Findings Reported in the Media
Getting Started Doing Research

SUMMARY
THE SCIENCE OF PSYCHOLOGY

• Psychologists develop theories and conduct psychological research to answer questions about behavior and mental processes; these answers can impact individuals and society.
• The scientific method, a means to gain knowledge, refers to the ways in which questions are asked and the logic and methods used to gain answers.
• Two important characteristics of the scientific method are an empirical approach and a skeptical attitude.

It seems safe to assume that you’ve been exposed to many research findings in psychology, both in media presentations and in your psychology coursework. If you are like the authors of your textbook, you are very curious about the mind and behavior. You like to think about people’s (and animals’) behavior. You wonder about people—why they act the way they do, how they became the people they are, and how they will continue to grow and change. And you may wonder about your own behavior and how your mind works. These thoughts and reflections set you apart from other people—not everyone is curious about the mind, and not everyone considers the reasons for behavior. But if you are curious, if you do wonder why people and animals behave the way they do, you have already taken the first step in the intriguing, exciting, and, yes, sometimes challenging journey into research methods in psychology.

Many students enter the field of psychology because of their interest in improving people’s lives. But what methods and interventions are helpful to people? For example, students with a career goal that involves conducting psychotherapy must learn to identify patterns of behavior that are maladaptive and to distinguish psychological interventions that are helpful from those that are not. Psychologists gain understanding and insight into the means for improving people’s lives by developing theories and conducting psychological research to answer their questions about behavior.

Many psychologists study topics that are directly relevant to people’s everyday lives. One scientific journal, Psychological Science in the Public Interest, is dedicated to publishing reports of behavioral research on issues of general interest. For example, a 2012 report compared the experience of online dating to conventional dating practices (Finkel, Eastwick, Karney, Reis, & Sprecher, 2012). These researchers observed that although online dating offers more potential partners, online daters may be more likely to view these potential partners as “commodities” and may be less willing to commit to any one person. Another article in the journal evaluated 10 techniques used to improve students’ learning (Dunlosky et al., 2013). The researchers found that the two best learning techniques include spreading out study sessions over time and taking practice tests. With this in mind, you can find practice tests for this textbook at the Online Learning Center: www.mhhe.com/shaughnessy10e.

Let us consider one very important research question among the many investigated by psychologists: What is the effect of violence in the media? After more than five decades of research and hundreds of research studies involving violence in television, films, video games, the Internet, and music, what do
psychologists say about the behavioral, emotional, and social effects of media violence? In a review of research that appeared in *Psychological Science in the Public Interest*, Anderson et al. (2003) reported several key findings:

— Exposure to media violence causes an increase in the likelihood of aggressive and violent thoughts, emotions, and behavior in short- and long-term contexts.

— The effects of violence in the media are consistent across a variety of research studies and methods, types of media, and samples of people.

— Recent long-term studies link frequent childhood exposure to media violence with adult aggression, including physical assaults and spouse abuse.

— Research evidence supports psychologists’ theories that media violence “activates” (primes) people’s aggressive cognitions and physiological arousal, facilitates people’s learning of aggressive behaviors through observation, and desensitizes people to violence.

— Factors that influence the likelihood of aggression in response to media violence include characteristics of viewers (e.g., age and extent to which they identify with aggressive characters), social environments (e.g., parental monitoring of media violence), and media content (e.g., realism of violent depictions and consequences of violence).

— No one is immune to the effects of media violence.

A number of studies reveal that children and youth spend an inordinate amount of time as media consumers, possibly second only to sleeping. Thus, an implication of the research findings listed is that one way to lessen the devastating impact of aggression and violence in our society is to decrease exposure to media violence. Indeed, psychological research played an important role in the development of the V-chip (the “V” stands for “Violence”) on televisions so that parents can block violent content (Anderson et al., 2003).

More research questions remain. One important question concerns the distinction between passive observation of violence (e.g., television depictions) and the active engagement with violent media that occurs with video and Internet games (Figure 1.1). Is it possible that the effects of media violence are even stronger when viewers are actively engaged with violence while playing video games? This might be the case if active involvement reinforces aggressive tendencies to a greater degree than does passive observation. Other research questions concern the steps needed to decrease the impact of violence in our society and the role that limiting violence in the media should play in a free society. Perhaps these questions will some day be your research questions, or perhaps you are interested in exploring the causes of drug addiction or the roots of prejudice. Literally thousands of important research questions remain. As you continue your study of research in psychology, one day you may contribute to psychologists’ efforts to improve our human condition!

Psychologists seek to answer questions about behavior, thoughts, and feelings by using the scientific method. The **scientific method** is an abstract concept that refers to the ways in which questions are asked and the logic and methods used to gain answers. When using the scientific method, psychologists rely on
an *empirical approach* and adopt a *skeptical attitude* toward explanations of behavior and mental processes. We will discuss these two characteristics as part of our introduction to psychological research in this chapter, and in Chapter 2 we will describe additional characteristics of the scientific method.
Science in Context

- Science occurs in at least three contexts: historical, social-cultural, and moral contexts.

Although the concept of the scientific method may be abstract, the practice of psychological science is very much a concrete human activity that affects us on several levels. Psychologists can have an impact at the level of the individual (e.g., therapeutic intervention for aggression), the family (e.g., parental control over their children's media use), and society (e.g., efforts to decrease violent programming on television networks). For their impact to be effective, however, psychologists must build upon a foundation of carefully designed and executed research.

Human activities are influenced heavily by the context in which they occur, and scientific activity is no exception. We can suggest that at least three contexts play a critical role in influencing science: historical context, social-cultural context, and moral context. We will briefly describe each of these in turn.

Historical Context

- An empirical approach, which relies on direct observation and experimentation for answering questions, was critical for developing the science of psychology.
- The computer revolution has been a key factor in the shift from behaviorism to cognitive psychology as the dominant theme in psychological inquiry.

We don’t really know exactly when psychology first became an independent discipline. Psychology emerged gradually, with roots in the thinking of Aristotle, in the writings of later philosophers such as Descartes and Locke and, later, in the work of early 19th-century physiologists and physicists. The official beginning of psychology is often marked as occurring in 1879 when Wilhelm Wundt established a formal psychology laboratory in Leipzig, Germany.

One of the decisions early psychologists faced at the end of the 19th century concerned whether psychology should more closely affiliate with the physical sciences or remain a subdiscipline of philosophy (Sokal, 1992). With the development of psychophysical methods and reaction-time methods for understanding nervous system transmission, psychologists believed they could eventually measure thought itself (Coon, 1992). With these powerful methods of observation, psychology was on the way to becoming a quantifiable, laboratory-based science. Scientific psychologists hoped that their study of the mind would achieve equal prominence with the more established sciences of physics, chemistry, and astronomy (Coon, 1992).

One of the roadblocks to the emerging science of psychology was the public’s strong interest in spiritualism and psychic phenomena at the turn of the 20th century (Coon, 1992). The general public viewed these topics of “the mind” to be within the province of psychology and sought scientific answers to their questions about clairvoyance, telepathy, and communication with the dead. However, many psychologists wished to divorce the young science from these pseudoscientific topics. To establish psychology as a science, psychologists embraced empiricism as the means to advance understanding about human
behavior. The empirical approach emphasizes direct observation and experimentation as a way of answering questions. It is perhaps the most important characteristic of the scientific method. Using this approach, psychologists focused on behaviors and experiences that could be observed directly.

Although psychology continues to emphasize the empirical approach, psychology has changed significantly since its beginnings. Early psychologists were primarily interested in questions of sensation and perception—for instance, visual illusions and imagery. In the early 20th century, psychology in the United States was heavily influenced by a behaviorist approach introduced by John B. Watson. Psychological theories focused on learning, and psychologists relied mostly on experiments with animals to test their theories. In behaviorism, an external stimulus and an observable behavioral response are more important than internal workings of the mind (described as the “black box”). Behaviorism was the dominant perspective in psychology well into the middle of the 20th century. Nevertheless, by the time Ulric Neisser’s Cognitive Psychology was published in 1967, psychology had turned again to an interest in mental processes. Cognitive psychologists returned to the reaction-time experiments that were used in the early psychology laboratories to investigate the nature of cognitive processes. The cognitive perspective is still dominant in psychology, and cognition is a major topic within the field of neuroscience as investigators study the biology of the mind. There is great potential for the development of scientific psychology in the 21st century.

A significant factor in the rise of cognitive psychology was the computer revolution (Robins, Gosling, & Craik, 1999). With the advent of computers, behaviorism’s “black box” was represented using a computer metaphor. Psychologists spoke of information processing, storage, and retrieval between input (stimulus) and output (response). Just as the computer provided a useful metaphor for understanding cognitive processes, the continued development of readily available, powerful computers has broadened the scope and precision of measuring cognitive processes. Today in psychology laboratories throughout the United States and the world, computer technology is replacing paper-and-pencil measures of people’s thoughts, feelings, and behaviors. Similarly, continued improvements in the technology of brain imaging (e.g., fMRI, functional magnetic resonance imaging) will advance neuroscience as an important discipline within the fields of psychology, biology, chemistry, and medicine.

These broad trends in the historical development of psychology, from behaviorism to cognitive neuroscience, represent the “bigger picture” of what happened in psychology in the 20th century. A closer look, however, reveals the variety of topics investigated in the science of psychology. Psychologists today do research in such general areas as clinical, social, organizational, counseling, physiological, cognitive, educational, developmental, and health psychology. Investigations in all of these areas help us to understand the complexity of behavior and mental processes.

Science in general—and psychology in particular—has changed because of the brilliant ideas of exceptional individuals. The ideas of Galileo, Darwin, and Einstein not only changed the way scientists viewed their disciplines, but their ideas also changed the way people understand themselves and their
PART I: General Issues

world. Similarly, many exceptional individuals have influenced the progress of psychology (Haggbloom et al., 2002), including Nobel Prize winners (see Box 1.1). Early in American psychology, William James (1842–1910) developed his technique of introspection to investigate mental processes, and Sigmund Freud (1856–1939) focused on understanding personality, mental disorders,
and the unconscious using his method of free association. As the prominence of behaviorism grew, B. F. Skinner (1904–1990) turned to the experimental analysis of behavior. Many other individuals greatly influenced thinking within specific areas of psychology, such as developmental, clinical, social, and cognitive psychology. We hope you will be able to learn more about these influential psychologists, from both the past and the present, in the areas of most interest to you.

Science also changes less dramatically, in ways that result from the cumulative efforts of many individuals. One way to describe these more gradual changes is by describing the growth of the profession of psychology. The American Psychological Association (APA) was formed in 1892 with 31 members. In 1992, the 100th anniversary of APA, there were over 72,000 members, and today there are over 137,000 APA members in 54 divisions of psychology. Another professional organization, the Association for Psychological Science (APS), formed in 1988 to emphasize scientific issues in psychology. Both APA and APS sponsor annual conventions, where psychologists learn about the most recent developments in their fields. Each organization also publishes scientific journals in order to communicate the latest research findings to its members and to society in general.

You can become part of psychology’s history in the making. Both APA and APS provide educational and research opportunities for undergraduate and graduate psychology students. Information about joining APA and APS as a regular member or as a student affiliate can be obtained by consulting their Internet websites:

(APA) www.apa.org
(APS) www.psychologicalscience.org

Both the APA and APS websites provide news about important recent psychological research findings, information about psychology publications (including relatively low-cost student subscription rates for major psychology journals), and links to many psychology organizations. Take a look!

Social and Cultural Context

- The social and cultural context influences researchers’ choice of topics, society’s acceptance of findings, and the locations in which research takes place.
- Ethnocentric bias occurs when people’s views of another culture are biased by the framework or lens of their own culture.

Science is influenced not only by its historical context but also by the prevailing social and cultural context. This prevailing context is sometimes referred to as the zeitgeist—the spirit of the times. Psychological research and its application exist in a reciprocal relationship with society: research has an effect on and is affected by society. The social and cultural context can influence what researchers choose to study, the resources available to support their research, and society’s acceptance of their findings. For example, researchers have developed new research programs on women’s issues and research that investigates issues
faced by racial and ethnic minorities. In part, this is due to the increasing numbers of women and minorities represented at academic institutions. The *Journal of Latina/o Psychology*, started in 2013, addresses immigration and its impact, acculturation and identity, and the needs of the growing Latino community. Social and cultural attitudes can affect not only what researchers study but how they choose to do their research. Society’s attitude toward bilingualism, for instance, can affect whether researchers emphasize problems that arise for children in bilingual education or the benefits that children gain from bilingual education.

Social and cultural values can affect how people react to reported findings from psychological research. For example, reports of research on controversial topics such as sexual orientation, recovered memories of childhood sexual abuse, and televised violence receive more media attention because of the public’s interest in these issues. At times, this greater interest generates public debate about the interpretation and implications of the findings for social policy. Public reaction can be extreme, as illustrated by the response to an article on child sexual abuse published in *Psychological Bulletin* (Rind, Tromovitch, & Bauserman, 1998). In their review and analysis of 59 studies of the effects of child sexual abuse (CSA), Rind et al. concluded that “CSA does not cause intense harm on a pervasive basis regardless of gender in the college population” (p. 46). After their research was promoted by pedophilia advocacy sites on the Web, “Dr. Laura” (talk show host Laura Schlessinger) characterized the article as endorsing adult sex with children (not the investigators’ intention) and criticized the American Psychological Association for publishing the study in its prestigious journal, *Psychological Bulletin* (Ondersma et al., 2001). In 1999 the U.S. House of Representatives responded to negative media attention by passing unanimously a resolution of censure of the research reported in this article.

Also, scientific debate over the controversial findings continues, with criticisms and rebuttals appearing in *Psychological Bulletin* (Dallam et al., 2001; Ondersma et al., 2001; Rind & Tromovitch, 2007; Rind, Tromovitch, & Bauserman, 2001), other journals, and books. An entire issue of *American Psychologist* was devoted to the political storm that resulted from this research (March 2002, Vol. 57, Issue 3). Such public criticisms of research findings, even findings based on solid, empirical science, appear to be a growing trend. Legal, administrative, and political attacks arise from those who oppose research findings because of strongly held personal beliefs or financial interests (Loftus, 2003). These attacks can have the unfortunate consequence of impeding legitimate scientific inquiry and debate.

Psychologists’ sensitivity to societal concerns, such as child sexual abuse, is one reason why psychology has not developed strictly as a laboratory science. Although lab-based investigation remains at the heart of psychological inquiry, psychologists and other behavioral scientists do research in schools, clinics, businesses, hospitals, and other nonlaboratory settings, including the Internet. In fact, the Internet is becoming a useful and popular research tool for psychological scientists (e.g., Birnbaum, 2000). By the end of 2012, there were an estimated 2 1/2 billion Internet users in the world, with nearly half of those living in Asia (www.internetworldstats.com). It did not take behavioral scientists very long to recognize the amazingly large and diverse “participant pool” for
their research (see, for example, Birnbaum, 2000; Gosling, Vazire, Srivastava, & John, 2004; Skitka & Sargis, 2005). The Web allows practically any type of psychological research that uses computers as equipment and humans as participants (Krantz & Dalal, 2000). One way that researchers recruit participants for their studies is to post research opportunities on various research-based websites. For example, APS maintains a Web page that allows Internet users to participate in psychological research. Check out Internet research opportunities at http://psych.hanover.edu/research/exponnet.html. We will have much more to say about research on the Internet as we introduce you to particular research methods in psychology. Of particular importance are ethical issues raised by this form of research (see Chapter 3).

Widely available Internet access provides psychologists with the opportunity to collaborate with researchers in other countries, and to investigate psychological concepts with research participants from around the world. However, a recent analysis of a sample of psychological research revealed that the contributors, samples, and editors of six premier journals published by the American Psychological Association were predominantly American (Arnett, 2008). In contrast, Americans represent less than 5% of the world’s population, and people throughout the world live in conditions very different from those of Americans. One may question, then, whether a psychological science that focuses heavily on Americans is complete. Some have even suggested that most participants in psychological research are WEIRDOs—that is, from Western, Educated, Industrialized, Rich, and Democratic countries, and that this skews research findings (Jones, 2010).

If we acknowledge that science is affected by social and cultural values, a question still remains as to whose culture is having—and whose culture should have—an influence. A potential problem occurs when we attempt to understand the behavior of individuals in a different culture through the framework or views of our own culture (Figure 1.2). Ethnocentric bias can occur when researchers fail to recognize when experiences and values of their own culture affect their interpretations of behavior observed in other cultures. To the extent that findings from psychological research involving Americans are used to interpret the behavior and experiences of individuals in other countries, a potential for ethnocentric bias exists.

For many years, psychologists have examined questions of similarities and differences across cultures in the research area referred to as cross-cultural psychology (Cohen, 2009). Much of the research in this area has focused on classifying people according to whether they live in individualistic or collectivist cultures (also referred to as independent–interdependent), but there are many cultural dimensions to consider, such as gender, ethnicity, sexual orientation, religion, socioeconomic status, and region of the country in which individuals live (Cohen, 2009). Furthermore, individuals are multicultural in that their behavior, thoughts, and values are influenced by these multiple dimensions.

Consider, for example, the psychological concept of agency, or the ability to control one’s environment and influence others. Research suggests that individuals higher in social status value control and agency, whereas individuals lower in social status, who are less able to control their environment, value flexibility and resilience (Snibbe & Markus, 2005). These sociocultural differences
influence individuals’ preferences and choices. The potential for ethnocentric bias exists when actions viewed as “being in control” or “independent” are seen as good. Such was the case when individuals who fled Hurricane Katrina were viewed more positively than people who stayed (Stephens et al., 2009). Those who stayed through the hurricane, often of lower socioeconomic status, were judged as having made bad choices. When interviewed, however, they emphasized their interdependence, strength, and faith as reasons for staying. Ethnocentric bias occurs when researchers fail to consider the social and cultural contexts that influence people’s behavior. Cross-cultural research helps psychologists avoid studying behavior from only the perspective of one dominant culture, and reminds us we need to be careful to use cultural lenses beyond our own when conducting research.
Moral Context

• The moral context of research demands that researchers maintain the highest standards of ethical behavior.
• The APA’s code of ethics guides research and helps researchers to evaluate ethical dilemmas such as the risks and benefits associated with deception and the use of animals in research.

Science is a search for truth. Individual scientists and the collective enterprise of science need to ensure that the moral context in which scientific activity takes place meets the highest of standards. Fraud, lies, and misrepresentations should play no part in a scientific investigation. But science is also a human endeavor, and frequently much more is at stake than truth. Both scientists and the institutions that hire them compete for rewards in a game with jobs, money, and reputations on the line. The number of scientific publications authored by a university faculty member, for instance, is usually a major factor influencing decisions regarding professional advancement through promotion and tenure. Under these circumstances, there are unfortunate, but seemingly inevitable, cases of scientific misconduct that occur more commonly than people think (Price, 2010).

A variety of activities constitute violations of scientific integrity. They include fabrication of data, plagiarism, selective reporting of research findings, failure to acknowledge individuals who made significant contributions to the research, misuse of research funds, and unethical treatment of humans or animals (see Adler, 1991). Some transgressions are easier to detect than others. Out-and-out fabrication of data, for instance, can be revealed when, in the normal course of science, independent researchers are not able to reproduce (replicate) results, or when logical inconsistencies appear in published reports. However, subtle transgressions, such as reporting only data that meet expectations or misleading reports of results, are difficult to detect. The dividing line between intentional misconduct and simply bad science is not always clear.

To educate researchers about the proper conduct of science, and to help guide them around the many ethical pitfalls that are present, most scientific organizations have adopted formal codes of ethics. In Chapter 3 we will introduce you to the APA ethical principles governing research with humans and animals. As you will see, ethical dilemmas often arise. Consider research by Klinesmith, Kasser, and McAndrew (2006), who tested whether male participants who handled a gun in a laboratory setting were subsequently more aggressive. Researchers told participants the experiment investigated whether paying attention to details influences sensitivity to tastes. Participants were randomly assigned to one of two attention conditions. In one group each participant handled a gun and wrote a set of instructions for assembling and disassembling the gun. In a second condition participants wrote similar instructions while interacting with the game Mouse Trap™. Afterward, each participant was asked to taste and rate a sample of water (85 g) with a drop of hot sauce in it, ostensibly prepared by the previous research participant. This was the “taste sensitivity” portion of the experiment. Next, participants were given water and hot sauce and asked to prepare the sample for the next participant. How much hot sauce they added served as the measure of aggression. Consistent with their
predictions, the researchers found that participants who had handled the gun added significantly more hot sauce to the water \((M = 13.61 \text{ g})\) than participants who interacted with the game \((M = 4.23 \text{ g})\).

This research raises several important questions: Under what conditions should researchers be allowed to deceive research participants about the true nature of the experiment? Does the benefit of the information gained about guns and aggression outweigh the risk associated with deception? Would participants who handled the gun have added less hot sauce if they had known the experiment actually investigated the relationship between guns and aggression?¹

Deception is just one of the many ethical issues that researchers must confront. As yet another illustration of ethical concerns, consider that animal subjects sometimes are used to help understand human psychopathology. This may mean exposing animal subjects to stressful and even painful conditions, and sometimes killing the animals for postmortem examinations. Under what conditions should psychological research with animal subjects be permitted? The list of ethical questions raised by psychological research is a lengthy one. Thus, it is of the utmost importance that you become familiar with the APA ethical principles and their application at an early stage in your research career, and that you participate (as research participant, assistant, or principal investigator) only in research that meets the highest standards of scientific integrity. Our hope is that your study of research methods will allow you to do good research and to discern what research is good to do.

THINKING LIKE A RESEARCHER

- To “think like a researcher” is to be skeptical regarding claims about the causes of behavior and mental processes, even those that are made on the basis of “published” scientific findings.
- The strongest evidence for a claim about behavior comes from converging evidence across many studies, although scientists recognize that claims are always probabilistic.

One important step a student of psychology must make is to learn to think like a researcher. To think scientifically means to set aside personal biases and preconceptions, and to have the courage to face evidence no matter where it leads (Lilienfeld, 2010). More than anything else, scientists are skeptical. A skeptical attitude regarding claims about the causes of behavior and mental processes is an important characteristic of the scientific method in psychology. Not only do scientists want to “see it before believing it,” but they are likely to want to see it again and again, perhaps under conditions of their own choosing.

¹A critical component of any research that uses deception is the debriefing procedure at the end of the experiment during which the true nature of the experiment is explained to participants (see Chapter 3). Participants in the Klinesmith et al. (2006) study were told the experiment investigated aggression, not taste sensitivity, and that they should not feel badly about any aggressive behavior they exhibited. None of the participants reported suspicion about the true nature of the experiment during the debriefing. Interestingly, Klinesmith et al. noted that some participants were disappointed their hot-sauce sample would not be given to the next participant!
Researchers strive to draw conclusions based on empirical evidence rather than their subjective judgment (see Box 1.2). The strongest scientific evidence is converging evidence obtained across different studies examining the same research question. Behavioral scientists are skeptical because they recognize that behavior is complex and often many factors interact to cause a psychological phenomenon. Discovering these factors is often a difficult task. The explanations proposed are sometimes premature because not all factors that may account for a phenomenon have been considered or even noticed. Behavioral scientists also recognize that science is a human endeavor. People make mistakes. Human inference is not always to be trusted. Therefore, scientists tend to be skeptical about “new discoveries,” treatments, and extraordinary claims, even those that are from “published” research studies.

The skepticism of scientists leads them to be more cautious than many people without scientific training. Many people are willing to accept as “fact” ideas about behavior based on their intuition or “common sense” (Lilienfeld, 2010, 2012).
Many misconceptions are regarded as true, despite psychological evidence to the contrary, for example, that opposites attract in romantic relationships, expressing pent-up anger reduces anger, and odd behavior is especially likely during full moons. As a student, you may be interested to learn that surveys indicate 75% of test-takers believe they should stick with their initial impression on multiple-choice exams, even when a different answer seems correct (Kruger, Wirtz, & Miller, 2005). In fact, over 70 years of psychological research shows that the majority of answer changes are from incorrect to correct, and that most people who change their answers improve their test scores.

Scientists do not, of course, automatically assume that common-sense explanations and unconventional interpretations of phenomena could not be true. They simply insist on being allowed to test all claims and to reject those that are inherently untestable. Scientific skepticism is a gullible public’s defense against frauds and scams selling ineffective medicines and cures, impossible schemes to get rich, and supernatural explanations for natural phenomena. At the same time, however, it is important to remember that trust plays as large a role as skepticism in the life of a scientist. Scientists need to trust their instruments, their participants, their colleagues’ reports of research, and their own professional judgment in carrying out their research.

We’ve indicated that to think like a researcher you need to be skeptical about evidence and claims. You already know something about evidence and claims if you’ve read any book detailing a crime and trial, or watched any number of popular movie or television legal dramas. Detectives, lawyers, and others in the legal profession collect evidence from a variety of sources and seek converging evidence in order to make claims about people’s behavior. A small amount of evidence may be enough to suspect someone of a crime, but converging evidence from many sources is needed to convict the person. Psychological scientists work in much the same way—they collect evidence in order to make claims about behavior and psychological processes.

The main emphasis of this text will be to detail the different research methods that result in different types of evidence and conclusions. As you proceed in your study of research methods, you will find that there are important—and different—scientific principles that apply to reporting a survey statistic or behavioral observation, identifying a relationship between factors (or “variables”), and stating there is a causal link between variables. The strongest scientific evidence is akin to the converging evidence needed in a trial to obtain a conviction. Even when researchers have strong evidence for their conclusions from replications (repetitions) of an experiment, they are in a similar situation as juries that have found a person guilty beyond a reasonable doubt. Researchers and juries both seek the truth, but their conclusions are ultimately probabilistic. Certainty is often beyond the grasp of both jurors and scientists.

By learning to think like a researcher, you can develop two important sets of skills. The first skill will enable you to be a more effective consumer of scientific findings so that you can make more informed personal and professional decisions. The second skill will enable you to learn how to do research so that you can contribute to the science of psychology. We will be fleshing out these two aspects of the scientific method throughout the text, but we briefly outline them
in this chapter. We first describe an illustration of why it is important to think like a researcher when evaluating research claims made in the media. We then describe how researchers get started when they want to gather evidence using the scientific method.

Evaluating Research Findings Reported in the Media

- Not all science reported in the media is “good science.” We must question what we read and hear.
- Media reports summarizing original research reports may omit critical aspects of the method, results, or interpretation of the research.

Researchers in psychology report their findings in professional journals that are available in printed and electronic form. Most people, however, learn about psychological research from the media—on the Internet, in newspapers and magazines, and on radio and TV. Much of this research is worthwhile. Psychological research can help people in a variety of areas, such as helping people to learn ways to communicate with a relative with Alzheimer’s, to avoid arguments, or to learn how to forgive. Three serious problems can arise, however, when psychological findings are reported in the media. First, often the psychology that is presented is not based on any research at all! For example, approximately 3,500 self-help books are published each year, but only 5% of them are based on scientific research (Arkowitz & Lilienfeld, 2006). Most people don’t know how to choose a good self-help book when scanning the shelves at a bookstore or browsing online. Second, when actual research findings are presented in the media, the research may not be “good” research, that is, conducted using accepted scientific procedures. A critical reader needs to sort out the good research from the bad—what are solid findings and which have not yet been confirmed. Given all the different media in which psychological research is reported, it’s fair to say that much of the research is not very good. So we have good reason to question the research we read or hear about in the media.

The third problem that can arise when scientific research is reported in the media is that “something can be lost in the translation.” Media reports are typically summaries of the original research, and critical aspects of the method, results, or interpretation of the research may be missing in the media summary. The more you learn about the scientific method, the better your questions will be for discerning the quality of research and for identifying the critical information lacking in a media report. For now, we can give you a taste of the types of questions you will want to ask by looking at an example of research reported in the media.

Do you believe that listening to Mozart’s music enhances intelligence? If you do, you’re not alone. In one report, 40% of people believed this claim is true (Chabris & Simons, 2010). Furthermore, it’s possible that “experts” encouraged your parents to play Mozart’s music to you when you were an infant, or even while you were still in the womb.

All of this is based on a psychological finding enthusiastically reported in the media dubbed the “Mozart effect.” That listening to music might raise intelligence is an intriguing idea, and represents one of many ways people’s search for a “quick fix” may be manipulated by the media and companies seeking
a profit (Schellenberg, 2005). But what do we know about the Mozart effect? When you encounter reports of psychological research in the media, a good first step is to go to the original source in which the research was reported.

The Mozart effect was first reported in a research article printed in the respected science journal *Nature* (Rauscher, Shaw, & Ky, 1993). In a simple experiment, college students listened to a Mozart piece, sat in silence, or listened to relaxation instructions. Each condition lasted 10 minutes, after which students completed a brief spatial reasoning task. Test performance was better after listening to Mozart than in the other two conditions, but this effect disappeared after an additional 10- to 15-minute period.

Although these findings were judged solid enough to publish in the journal, the application of these findings is very shaky. Millions of parents were encouraged to play “smart symphonies” to their infants based on an effect demonstrated with 36 college students, on a very specific reasoning test, and for an effect that lasted 15 minutes at most! Additional research on the Mozart effect has yielded mixed findings. Some researchers were unable to replicate (repeat) the finding, and when the Mozart effect is observed, it is small (Chabris, 1999; Steele, Bass, & Crook, 1999). Furthermore, researchers have demonstrated that the enhanced test performance is due to the positive mood and increased arousal when listening to enjoyable stimuli—a well-known finding in psychology (Thompson, Schellenberg, & Husain, 2001).

It’s safe to say that something was “lost in the translation” from the original finding to widespread belief in the Mozart effect. The moral of this story is to be skeptical regarding media reports of research findings. When possible, go to the original source or seek opinions based on solid scientific evidence. Your job is to question what you read and hear; our job is to provide you with the knowledge of research methods you need to evaluate and understand research findings.

Getting Started Doing Research

- When beginning a research study, students can answer the first question of “what to study?” by reviewing psychological topics in psychology journals, textbooks, and courses.
- A research hypothesis is a tentative explanation for a phenomenon; it is often stated in the form of a prediction together with an explanation for the predicted outcome.
- Researchers generate hypotheses in many ways, but they always review published psychological studies before beginning their research.
- To decide if their research question is a good one, researchers consider the scientific importance, scope, and likely outcomes of the research, and whether psychological science will be advanced.
- A multimethod approach, one that searches for answers using various research methodologies and measures, is psychology’s best hope for understanding behavior and the mind.

As you begin learning about how researchers in psychology gather evidence, we will pass along advice from several expert researchers about one of the most fundamental aspects of research—getting started. We will organize this section
around three questions that researchers ask themselves as they begin a research project:

— What should I study?
— How do I develop a hypothesis to test in my research?
— Is my research question a good one?

When deciding what topic to study, many psychology students turn to their interests in psychopathology and issues associated with mental health. Other students are intrigued with the puzzles surrounding human cognition, such as memory, problem solving, and decision making. Still others are interested in problems of developmental and social psychology. Psychology provides a wealth of research possibilities to explore, as is illustrated by the literally hundreds of scientific journals that publish the results of psychological research. You can quickly find information about the many research areas within psychology by reviewing the contents of a standard introductory psychology textbook. More specific information can be found, of course, in the many classes offered by the psychology department of your college or university, such as abnormal psychology, cognitive psychology, and social psychology.

It’s not just students who are concerned about research questions in psychology. In July 2009, an entire issue of the journal *Perspectives in Psychological Science* was devoted to discussions of research questions and directions for the future of psychology (Diener, 2009). Top researchers from various areas within psychology identified important questions in their fields—for example, questions addressing mind-brain connections, evolutionary psychology, and even human-android interactions. When searching for a research question, reading these articles may be a good place to start!

Students often develop their initial research topics through interactions with their psychology instructors. Many professors conduct research and are eager to involve students on research teams. You may only need to ask. Psychology departments also offer many other resources to help students develop research ideas. One opportunity is in the form of “colloquia” (singular: colloquium). A colloquium is a formal research presentation in which researchers, sometimes from other universities, present their theories and research findings to faculty and students in the department. Watch for announcements of upcoming colloquia in your psychology department.

No matter how or where you begin to develop a topic, an important initial step when getting started is to explore published psychological research. Searching for psychology research studies using the Internet is a relatively easy, even exciting task. In Chapter 13 of this book, we outline how to search the psychological research literature, including ways to use computer databases in your search.

There are several reasons why you must search the psychology literature before beginning to do research. One obvious reason is that the answer to your research question may already be there. Someone else may have entertained the same question and provided an answer, or at least a partial one. It is very likely that you will discover research findings that are related to your research question. Although you may be disappointed to find your research question has been explored, consider that finding other people who have done research
on the same or similar idea affirms the importance of your idea. Doing research without a careful examination of what is already known may be interesting or fun (it certainly may be easy); perhaps you could call it a "hobby," but we can't call it science. *Science is a cumulative enterprise—current research builds on previous research.*

Once you have identified previous research related to your idea, your reading may lead you to discover inconsistencies or contradictions in the published research. You may also find that the research findings are limited in terms of the nature of the participants studied or the circumstances under which the research was done, or that there is a psychological theory in need of testing. Having made such a discovery, you have found a solid research lead, a path to follow.

When reading psychological studies and thinking about possible research questions, you might also consider how the results of psychological studies are applied to societal problems. As you learn how to do research in psychology, you may consider ways this knowledge can be used to generate research investigations that will improve life for humans and animals.

Funder (2009) described psychology as the luckiest of the sciences because it has the most interesting questions, beginning with “Why do people do what they do?” But some people browse psychology journals wondering where all those interesting questions (and answers) are, and criticize some research, such as personality and social psychological research, because the “behavior” examined mostly involves questionnaire responses or reaction times on a computer keyboard (Baumeister, Vohs, & Funder, 2007). In response, several psychologists have called for more research that describes things people actually do (e.g., eat, have political views, flirt) and that looks at more “real” behaviors (Funder, 2009; Rozin, 2009). Perhaps this is something to keep in mind as you plan your own research.

Finally, as Sternberg (1997) points out, choosing a question to investigate should not be taken lightly. Some questions are simply not worth asking because their answers offer no hope of advancing the science of psychology. The questions are, in a word, meaningless, or at best, trivial. Sternberg (1997) suggests that students new to the field of psychological research consider several questions before deciding they have a good research question:

—Why might this question be scientifically important?
—What is the scope of this question?
—What are the likely outcomes if I carry out this research project?
—To what extent will psychological science be advanced by knowing the answer to this question?
—Why would anyone be interested in the results obtained by asking this question?

As you begin the research process, finding answers to these questions may require guidance from research advisors and others who have successfully conducted their own research. We also hope that your ability to answer these questions will be enhanced as you learn more about theory and research in
psychology, and as you read about the many examples of interesting and meaningful psychological research that we describe in this book.

The next decision is a bit harder. As researchers get started, they seek to identify their research hypothesis. A hypothesis (plural: hypotheses) is a tentative explanation for a phenomenon. Often a hypothesis is stated in the form of a prediction for some outcome, along with an explanation for the prediction. We proposed a research hypothesis earlier when we suggested that the effects (e.g., increased aggression) of violent media may be stronger for video games than for passive television viewing because players are actively engaged in the aggressive actions, thus increasing their aggressive tendencies. (An alternative hypothesis might suggest that the effects of video games might be less strong because game players have the opportunity to release the aggressive impulses that passive television viewers do not.)

McGuire (1997) identified 49 simple rules (“heuristics”) for generating a hypothesis to be tested scientifically. We cannot review all 49 suggestions here, but we can give you some insight into McGuire’s thinking by listing some of these heuristics. He suggests, for example, that we might generate a hypothesis for a research study by

—thinking about deviations (oddities, exceptions) from a general trend or principle;
—imagining how we would behave in a task or if faced with a specific problem;
—considering similar problems whose solution is known;
—making sustained, deliberate observations of a person or phenomenon (e.g., performing a “case study”);
—generating counterexamples for an obvious conclusion about behavior;
—borrowing ideas or theories from other disciplines.

Of course, identifying a research question and hypothesis doesn’t necessarily tell you how to do the research. What is it exactly that you want to know?

STRETCHING EXERCISE

In this exercise, form hypotheses using an item from each column. Link together an event or behavior from the first column with an outcome from the second column, and then a possible explanation from the third column. A sample hypothesis is illustrated.

<table>
<thead>
<tr>
<th>Event or Behavior</th>
<th>Outcome</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 exposure to thin body images</td>
<td>1 increased helping</td>
<td>1 reinterpretation of events</td>
</tr>
<tr>
<td>2 terrorism attack on 9/11/2001</td>
<td>2 health benefits</td>
<td>2 increased empathy</td>
</tr>
<tr>
<td>3 writing about emotional events</td>
<td>3 increased traffic fatalities</td>
<td>3 comparison of self to ideal</td>
</tr>
<tr>
<td>4 mimicking behavior and posture</td>
<td>4 body dissatisfaction</td>
<td>4 fear of air travel</td>
</tr>
</tbody>
</table>

Sample Hypothesis: Writing about emotional events causes health benefits, possibly due to a reinterpretation of events that occurs with writing. [Pennebaker & Francis, 1996]
Answering this question will mean that you must make other decisions that we will address throughout this text. As a researcher, you will ask yourself questions such as “Should I do a qualitative or quantitative research study? What is the nature of the variables I wish to investigate? How do I find reliable and valid measures of behavior? What is the research method best suited to my research question? What kinds of statistical analyses will be needed? Do the methods I choose meet accepted moral and ethical standards?” These and other steps associated with the scientific process are illustrated in Table 1.1. Don’t be concerned if the terms in these questions and in Table 1.1 are unfamiliar. As you proceed through this text on research methods in psychology, you will learn about these steps of the research process. Table 1.1 will be a useful guide when you begin conducting your own research.
This text introduces you to the ways in which psychologists use the scientific method. As you know, psychology is a discipline with many areas of study and many questions. No single research methodology can answer all the questions psychologists have about behavior and mental processes. Thus, the best approach to answering our questions is the **multimethod approach**—that is, searching for an answer using various research methodologies and measures of behavior. The goal of this book is to help you to fill a “toolbox” with strategies for conducting research. As you will learn throughout this text, any one method or measure of behavior may be flawed or incomplete in its ability to answer research questions fully. When researchers use multiple methods, the flaws associated with any particular method are surmounted by other methods that “fill in the gaps.” Thus, an important advantage of the multimethod approach is that researchers obtain a more complete understanding of behavior and mental processes. It is our hope that with these tools—the research methods described in this text—you will be on the path toward answering your own questions in the field of psychology.

Summary

Psychologists seek to understand behavior and mental processes by developing theories and conducting psychological research. Psychological studies can have an important impact on individuals and society; one example is research demonstrating the negative impact of violence in the media. Researchers use the scientific method, which emphasizes an empirical approach to understanding behavior; this approach relies on direct observation and experimentation to answer questions. Scientific practice occurs in historical, social-cultural, and moral contexts. Historically, the computer revolution was instrumental in the shift in emphasis from behaviorism to cognitive psychology. Many psychologists, past and present, have helped to develop the diverse field of psychology.

The social-cultural context influences psychological research in terms of what researchers choose to study and society’s acceptance of their findings. Culture also influences research when ethnocentrism occurs. In this bias people attempt to understand the behavior of individuals who live in a different culture through the framework or views of their own culture. The moral context demands that researchers maintain the highest standards of ethical behavior. Clear violations of scientific integrity include fabrication of data, plagiarism, selective reporting of research findings, failure to acknowledge individuals who made significant contributions to the research, misuse of research funds, and unethical treatment of humans or animals. The APA’s code of ethics guides research and helps researchers to evaluate ethical dilemmas such as the risks and benefits associated with deception and the use of animals in research.

Researchers must be skeptical regarding claims about behavior and mental processes. The strongest evidence for a claim comes from converging evidence across many studies, although scientists recognize that all research findings are probabilistic rather than definitive. Three problems arise with media reports of research: Media reports may not be based on scientific research, the research may not meet high standards, and media reports are typically summaries of the original
research. An important first step in evaluating media reports is to go to the original publication to learn more about the methods and procedures of the research.

The first step in beginning research is to generate a research question. Students gain research ideas from their textbooks and courses, and through interactions with instructors. The next step is to develop a research hypothesis. A research hypothesis is a tentative explanation for the phenomenon to be tested, and it is often stated in the form of a prediction together with an explanation for the predicted outcome. Although research hypotheses are developed in many ways, an essential part of this step is to review psychological research related to the topic. Finally, it is important to evaluate whether answers to a research question will meaningfully contribute to psychologists’ understanding of behavior and mental processes.

A multimethod approach employs various research methodologies and measures to answer research questions and to gain a more complete understanding of behavior. Scientists recognize that any one method or measure of behavior is flawed or incomplete; multiple methods allow researchers to “fill in the gaps” left by any particular method. The aim of this textbook is to introduce you to the variety of research methods used by psychologists to answer their questions.

Key Concepts

- scientific method 4
- empirical approach 7
- ethnocentric bias 11
- hypothesis 21
- multimethod approach 23

Review Questions

1. Describe two important characteristics of the scientific method.
2. Why did early psychologists choose the empirical approach as the favored method for psychological investigations?
3. Identify two ways in which the computer was critical to the development of psychology in the 20th century.
4. Provide an example of (1) how social and cultural factors may influence psychologists’ choice of research topics and (2) how social-cultural factors may influence society’s acceptance of research findings.
5. Describe how ethnocentric bias can be a problem in research and suggest one way in which researchers can prevent this bias.
6. What does it mean that research is conducted in a “moral context”?
7. Describe two ethical dilemmas that psychologists may face when conducting research.
8. Explain why researchers are skeptical about research findings, and explain how their attitude likely differs from that of the general public.
9. Identify three reasons you would give another person as to why he or she should critically evaluate the results of the research reported in the media (e.g., self-help books, television, magazines).
10. What are the three initial steps researchers take as they begin a research project?
11. Identify two reasons it is important to search the psychological research literature when beginning research.
12. Describe the multimethod approach to research and identify its main advantage.
1 Consider the hypothesis that playing violent video games causes people to be more aggressive compared to watching violence passively on television.
 A How might you test this hypothesis? That is, what might you do to compare the two different experiences of exposure to violence?
 B How would you determine whether people acted in an aggressive manner after exposure to violence?
 C What additional factors would you have to consider to make sure that exposure to violence, not some other factor, was the important factor?

2 Researchers use their observations of behavior to make inferences about psychological concepts. For example, “boredom” could be measured by counting the number of times someone moves (fidgets) in a chair.
 A Identify a behavior you could observe to assess each of the following concepts used by psychologists: interpersonal attraction, embarrassment, fear, enjoyment, and shyness.
 B For each of the behaviors you came up with in Part A, what might be a different concept that is being measured? For example, movements in a chair might measure enthusiasm or anxiety, rather than boredom.

3 Identify how ethnocentric bias might influence each of the following research questions, then propose an alternative to reduce ethnocentric bias.
 A A researcher seeks to determine whether happiness is associated with personal fulfillment (i.e., a person’s ability to maximize his or her own individual goals), and compares the relationship between happiness and self-fulfillment in America and China.
 B A psychologist has conducted research on romantic relationships for over 35 years.

 Although her research questions have focused on how dating partners interact when together, she decided to expand her research to examine texting between dating partners. Specifically, she plans to test her idea that texting between partners leads to more superficial romantic relationships.
 C A researcher is interested in people’s reactions to threats of terrorism and is specifically interested in the theory that terrorism activates people’s sense of their own mortality. He proposes a research study in which reminding people of the afterlife will diminish their fear of terrorism.

4 Form hypotheses by linking an event or behavior from the first column with an outcome from the second column, and then identify a possible explanation from the third column. Use each event, outcome, and explanation once. More than one combination of the variables may be possible.

<table>
<thead>
<tr>
<th>Event or Behavior</th>
<th>Outcome</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 living in poverty</td>
<td>1 reduced helping</td>
<td>1 physiological arousal, anger</td>
</tr>
<tr>
<td>2 racial discrimination</td>
<td>2 risk-taking behavior</td>
<td>2 experience of unpredictability</td>
</tr>
<tr>
<td>3 imagine meeting negatively stereotyped person</td>
<td>3 psychological distress</td>
<td>3 decreased perception of others’ humanity</td>
</tr>
<tr>
<td>4 playing violent video games</td>
<td>4 greater intention to interact with person</td>
<td>4 reduced anxiety</td>
</tr>
</tbody>
</table>

Answer to Stretching Exercise

1 Exposure to thin body images causes body dissatisfaction, possibly due to a comparison of one’s self to an ideal body image. [Dittmar, Halliwell, & Ive, 2006]
2 Following the terrorism attack on 9/11/2001, traffic fatalities increased, possibly due to an increased fear of air travel. [Gigerenzer, 2004]
3 Mimicking the behavior and posture of individuals causes them to help more, possibly due to increased feelings of empathy. [van Baaren, Holland, Kawakami, & van Knippenberg, 2004]
Answer to Challenge Question 1

A One way to test this hypothesis would be to have two groups of participants. One group
would play violent video games, and a second group would watch violence on television. A
second way to test the hypothesis would be to use the same group of participants and expose
them to both types of violence at different points in time.

B To determine whether people behaved more aggressively following exposure to video
games or television, you would need some measure of aggressive behavior. A potentially
limitless number of measures exists, perhaps limited only by the ingenuity of the researcher.
A good first step is to use measures that other investigators have used; that way, you can
compare the results of your study with previous results. Measures of aggression include ask-
ing people to indicate how they would respond to hypothetical situations involving anger,
or observing how they respond to experimenters (or others) following exposure to violence.
In the latter case, the researcher would need a checklist or some other method for recording
participants’ violent (or nonviolent) behavior. Keep in mind that aggression can be defined
in a number of ways, including physical behaviors, verbal behaviors, and even thoughts (but
note the difficulty in measuring the latter).

C It would be important to make sure that the two groups—television vs. video game—are
similar in every way except for television or video game exposure. For example, suppose
your research had two groups of participants: One group watched television and the other
group played video games. Suppose, also, that your results indicated that participants who
played video games were more aggressive than participants who watched television on your
aggression measure.

One problem would occur if the video game participants were naturally more aggres-
sive to begin with compared to the television participants. It would be impossible to know
whether exposure to violence in your research or their natural differences in aggressiveness accounted for the observed difference in aggressiveness in your experiment. You would
want to make sure, therefore, that the participants in each group are similar before the expo-
sure to violence. Later in this text you will learn how to make the groups similar.

You would also want to make sure that other aspects of the participants’ experiences are
similar. For example, you would ensure that the length of time exposed to violence in each
group is similar. In addition, you would try to make sure that the degree of violence in the
television program is similar to the degree of violence in the video game. It would also be im-
portant that participants’ experiences do not differ for a number of additional factors, such
as whether other people are present and the time of day. In order to demonstrate that video
game playing causes more (or less) aggression than television viewing, the most important
point is that the only factor that should differ between the groups is the type of exposure.
CHAPTER TWO

The Scientific Method

CHAPTER OUTLINE

SCIENTIFIC AND EVERYDAY APPROACHES TO KNOWLEDGE
General Approach and Attitude
Observation
Concepts
Reporting
Instruments
Measurement
Hypotheses

GOALS OF THE SCIENTIFIC METHOD
Description
Prediction
Explanation
Application

SCIENTIFIC THEORY CONSTRUCTION AND TESTING
SUMMARY
Scientific and Everyday Approaches to Knowledge

- The scientific method is empirical and requires systematic, controlled observation.
- Scientists gain the greatest control when they conduct an experiment; in an experiment, researchers manipulate independent variables to determine their effect on behavior.
- Dependent variables are measures of behavior used to assess the effects of independent variables.
- Scientific reporting is unbiased and objective; clear communication of constructs occurs when operational definitions are used.
- Scientific instruments are accurate and precise; physical and psychological measurement should be valid and reliable.
- A hypothesis is a tentative explanation for a phenomenon; testable hypotheses have clearly defined concepts (operational definitions), are not circular, and refer to concepts that can be observed.

For over 100 years the scientific method has been the basis for investigation in the discipline of psychology. The scientific method does not require a particular type of equipment, nor is it associated with a particular procedure or technique. As first described in Chapter 1, the scientific method refers to the ways in which scientists ask questions and the logic and methods used to gain answers. There are many fruitful approaches to gaining knowledge about ourselves and our world, such as philosophy, theology, literature, art, and other disciplines. One of the best ways to understand the scientific method as a means of gaining knowledge is to distinguish it from our “everyday” ways of knowing. Just as a telescope and a microscope extend our everyday abilities to see, the scientific method extends our everyday ways of knowing.

Several major differences between scientific and our everyday ways of knowing are outlined in Table 2.1 and are summarized in the following pages. Collectively, the characteristics listed under “Scientific” define the scientific method.

TABLE 2.1 CHARACTERISTICS OF SCIENTIFIC AND NONSCIENTIFIC (EVERYDAY) APPROACHES TO KNOWLEDGE*

<table>
<thead>
<tr>
<th></th>
<th>Nonscientific (everyday)</th>
<th>Scientific</th>
</tr>
</thead>
<tbody>
<tr>
<td>General approach:</td>
<td>Intuitive</td>
<td>Empirical</td>
</tr>
<tr>
<td>Attitude:</td>
<td>Uncritical, accepting</td>
<td>Critical, skeptical</td>
</tr>
<tr>
<td>Observation:</td>
<td>Casual, uncontrolled</td>
<td>Systematic, controlled</td>
</tr>
<tr>
<td>Concepts:</td>
<td>Ambiguous, with surplus meanings</td>
<td>Clear definitions, operational specificity</td>
</tr>
<tr>
<td>Reporting:</td>
<td>Biased, subjective</td>
<td>Unbiased, objective</td>
</tr>
<tr>
<td>Instruments:</td>
<td>Inaccurate, imprecise</td>
<td>Accurate, precise</td>
</tr>
<tr>
<td>Measurement:</td>
<td>Not valid or reliable</td>
<td>Valid and reliable</td>
</tr>
<tr>
<td>Hypotheses:</td>
<td>Untestable</td>
<td>Testable</td>
</tr>
</tbody>
</table>

*Based in part on distinctions suggested by Marx (1963).
General Approach and Attitude

We described in Chapter 1 that in order to think like a researcher you must be skeptical. Psychological scientists are cautious about accepting claims about behavior and mental processes, and they critically evaluate the evidence before accepting any claims. In our everyday ways of thinking, however, we often accept evidence and claims with little or no evaluation of the evidence. In general, we make many of our everyday judgments using intuition. This usually means that we act on the basis of what “feels right” or what “seems reasonable.” Although intuition can be valuable when we have little other information, intuition is not always correct.

When we rely on intuition to make judgments we often fail to recognize that our perceptions may be distorted by cognitive biases, or that we may not have considered all available evidence (see Box 2.1; Kahneman & Tversky, 1973; Tversky & Kahneman, 1974). By using the scientific method, psychologists seek to avoid the confirmation bias—our natural tendency to seek evidence that is consistent with our intuitions and ignore or deny contradictory evidence. Confirmation bias drives people’s choice of news programs (e.g., Fox, CNN, MSNBC) and motivates people to avoid information that challenges their preexisting attitudes, beliefs, and behaviors, even when avoiding information causes them to be wrong (Hart et al., 2009).

Psychological research has demonstrated many examples of how confirmation bias occurs. For example, even young children are susceptible to the cognitive error called illusory correlation, which is a tendency to perceive relationships between events when none exists. In one study (Susskind, 2003), researchers showed children many pictures of men and women performing stereotypical (e.g., a woman knitting), counterstereotypical (e.g., a man knitting), and neutral behaviors (e.g., reading a book). When asked to estimate how many of each type

BOX 2.1

WE’RE NOT AS SMART (OR GOOD) AS WE THINK

Psychologists have long recognized that human thinking is prone to errors and biases. These biases affect the way we make predictions and decisions, and how we interact with people. A number of books targeted for a general audience describe this research, with several of them reaching bestseller lists. Check out these books:

- *Blind Spot: Hidden Biases of Good People* by Mahzarin R. Banaji and Anthony G. Greenwald (Delacorte, 2013)
- *Thinking, Fast and Slow* by Daniel Kahneman (Farrar, Strauss, and Giroux, 2011)
- *You Are Not So Smart: Why Your Memory Is Mostly Fiction, Why You Have Too Many Friends on Facebook, and 46 Other Ways You’re Deluding Yourself* by David McRaney (Gotham, 2011)
of picture they saw, children overestimated the number of stereotypical pictures. By noticing pictures consistent with their beliefs more than contradictory pictures, they confirmed their stereotypes about men and women’s behavior.

The scientific approach to knowledge is empirical rather than intuitive. An empirical approach emphasizes *direct observation* and *experimentation* as a way of answering questions. This does not mean that intuition plays no role in science. Research at first may be guided by the scientist’s intuition. Eventually, however, the scientist strives to be guided by the empirical evidence that direct observation and experimentation provide.

Observation

We can learn a great deal about behavior by simply observing the actions of others. However, everyday observations are not always made carefully or systematically. Most people do not attempt to control or eliminate factors that might influence the events they are observing. As a result, we often make incorrect conclusions based on our casual observations. Consider, for instance, the classic case of Clever Hans. Hans was a horse who was said by his owner, a German mathematics teacher, to have amazing talents. Hans could count, do simple addition and subtraction (even involving fractions), read German, answer simple questions (“What is the lady holding in her hands?”), give the date, and tell time (Watson, 1914/1967). Hans answered questions by tapping with his forefoot or by pointing with his nose at different alternatives shown to him. His owner considered Hans to be truly intelligent and denied using any tricks to guide his horse’s behavior. And, in fact, Clever Hans was clever even when the questioner was someone other than his owner.

Newspapers carried accounts of Hans’ performances, and hundreds of people came to view this amazing horse (Figure 2.1). In 1904 a scientific commission was established with the goal of discovering the basis for Hans’ abilities. Much to his owner’s dismay, the scientists observed that Hans was not clever in two situations. First, Hans did not know the answers to questions if the questioner also did not know the answers. Second, Hans was not very clever if he could not see his questioner. What did the scientists observe? They discovered that Hans was responding to the questioner’s subtle movements. A slight bending forward by the questioner would start Hans tapping, and any movement upward or backward would cause Hans to stop tapping. The commission demonstrated that questioners were unintentionally cuing Hans as he tapped his forefoot or pointed. Thus, it seems that Hans was a better observer than many of the people who observed him!

This famous account of Clever Hans illustrates the fact that scientific observation (unlike casual observation) is systematic and controlled. Indeed, it has been suggested that *control* is the essential ingredient of science, distinguishing it from nonscientific procedures (Boring, 1954; Marx, 1963). In the case of Clever Hans, investigators exercised control by manipulating, one at a time, conditions such as whether the questioner knew the answer to the questions asked and whether Hans could see the questioner (see Figure 2.1). By using controlled observation, scientists gain a clearer picture of the factors that produce
a phenomenon. The careful and systematic observation of Clever Hans is one example of the control used by scientists to gain understanding about behavior. Box 2.2 describes an example of how the story of Clever Hans from over 100 years ago informs scientists even today.

Scientists gain the greatest control when they conduct an experiment. In an experiment, scientists manipulate one or more factors and observe the effects of
this manipulation on behavior. The factors that the researcher controls or manipulates in order to determine their effect on behavior are called the independent variables. In the simplest of studies, the independent variable has two levels. These two levels often represent the presence and the absence of some treatment, respectively. The condition in which the treatment is present is commonly called the experimental condition; the condition in which the treatment is absent is called the control condition. For example, if we wanted to study the

Box 2.2

CAN DOGS DETECT CANCER? ONLY THE NOSE KNOWS

Research on methods to detect cancer took an interesting turn in 2004 when investigators reported the results of a study in the *British Medical Journal* demonstrating that dogs trained to smell urine samples successfully detected patients’ bladder cancer at rates greater than chance (Willis et al., 2004). This research followed up many anecdotal reports in which dog owners described their pets as suddenly overprotective or obsessed with skin lesions prior to the owners’ being diagnosed with cancer. Interest in the story was so great that similar demonstrations were conducted on television programs such as *60 Minutes*.

Skeptics, however, cited the example of Clever Hans to challenge the findings, arguing that the dogs relied on researchers’ subtle cues in order to discriminate samples taken from cancer vs. control patients. Proponents of the study insisted that the researchers and observers were blind to the true status of the samples so could not be cuing the dogs. More recent studies suggest mixed results (e.g., Gordon et al., 2008; McCulloch et al., 2006). Researchers in this new area of cancer detection have applied for research funding to conduct more experiments. We now await the results of these rigorous studies to tell us whether dogs can, in fact, detect cancer.

Key Concept

Sometimes the levels of the independent variable are selected by a researcher rather than manipulated. An individual differences variable is a characteristic or trait that varies across individuals; for example, sex of the participants (male, female) is an individual differences variable. When researchers investigate whether behavior differs according to participants’ sex, they select men and women and examine this factor as an individual differences variable. As we will see in Chapter 6, there are important differences between manipulated and selected independent variables.
effect of drinking alcohol on the ability to process complex information quickly and accurately, the independent variable would be the presence or absence of alcohol in a drink. Participants in the experimental condition would receive alcohol, while participants in the control condition would receive the same drink without alcohol. After manipulating this independent variable, the researcher might ask participants to play a complicated video game to see whether they are able to process complex information.

The measures of behavior that are used to assess the effect (if any) of the independent variables are called dependent variables. In our example of a study that investigates the effects of alcohol on processing complex information, the researcher might measure the number of errors made by control and experimental participants when playing the difficult video game. The number of errors, then, would be the dependent variable.

Scientists seek to determine whether any differences in behavior (the dependent variable) are caused by the different conditions of the independent variable. In our example, this would mean that a difference in errors when playing the video game is caused by the different independent variable conditions—whether alcohol is present or absent. To form this clear conclusion, however, scientists must use proper control techniques. Each chapter of this book will emphasize how researchers use control techniques to study behavior and the mind.

Concepts

We use the term concepts to refer to things (both living and inanimate), to events (things in action), and to relationships among things or events, as well as to their characteristics (Marx, 1963). “Dog” is a concept, as is “barking,” and so is “obedience.” Concepts are the symbols by which we ordinarily communicate. Clear, unambiguous communication of ideas requires that we clearly define our concepts.

In everyday conversation we often get by without worrying too much about how we define a concept. Many words, for instance, are commonly used and apparently understood even though neither party in the conversation knows exactly what the words mean. That is, people frequently communicate with one another without being fully aware of what they are talking about! This may sound ridiculous but, to illustrate our point, try the following: Ask a few people whether they believe that intelligence is mostly inherited or mostly learned. After discussing the roots of intelligence, ask them what they mean by “intelligence.” You will probably find that most people have a difficult time defining this concept, even after debating its origins, and people will provide different definitions. Clearly, to answer the question of whether intelligence is mostly inherited or learned, we need to have an exact definition that all parties can accept.

The study of “concepts” is so important in psychological science that researchers refer to concepts by a special name: constructs. A construct is a concept or idea; examples of psychological constructs include intelligence, depression, aggression, and memory. One way in which a scientist gives meaning
to a construct is by defining it operationally. An operational definition explains a concept solely in terms of the observable procedures used to produce and measure it. Intelligence, for instance, can be defined operationally by using a paper-and-pencil test emphasizing understanding of logical relationships, short-term memory, and familiarity with the meaning of words. Some may not like this operational definition of intelligence, but once a particular test has been identified, there can at least be no argument about what intelligence means according to this definition. Operational definitions facilitate communication, at least among those who know how and why they are used.

Although exact meaning is conveyed via operational definitions, this approach to communicating about constructs has not escaped criticism. One problem is that if we don’t like one operational definition of intelligence, then simply give intelligence another operational definition. Does this mean that there are as many kinds of intelligence as there are operational definitions? The answer, unfortunately, is that we don’t really know. To determine whether a different procedure or test yields a new definition of intelligence, we would have to seek additional evidence. For example, do people who score high on one test also score high on the second test? If they do, the new test may be measuring the same construct as the old one.
Another criticism of using operational definitions is that the definitions are not always meaningful. This is particularly relevant in cross-cultural research where, for example, a paper-and-pencil test of intelligence may tap into knowledge that is specific to a particular cultural context. How do we decide whether a construct has been meaningfully defined? Once again, the solution is to appeal to other forms of evidence. How does performance on one test compare to performance on other tasks that are commonly accepted as measures of intelligence? Scientists are generally aware of the limitations of operational definitions; however, a major strength of using operational definitions is that they help to clarify communication among scientists about their constructs. This strength is assumed to outweigh the limitations.

Reporting

Suppose you ask someone to tell you about a class you missed. You probably want an accurate report of what happened in class. Or perhaps you missed a party at which two of your friends had a heated argument, and you want to hear from someone what happened. As you might imagine, personal biases and subjective impressions often enter into everyday reports that we receive. When you ask others to describe an event, you are likely to receive details of the event (not always correct) along with their personal impressions.

When scientists report their findings, they seek to separate what they have observed from what they conclude or infer on the basis of these observations. For example, consider the photograph in Figure 2.2. How would you describe
to someone what you see there? One way to describe this scene is to say that two people are running along a path. You might also describe this scene as two people racing each other. If you use this second description, you are reporting an inference drawn from what you have seen and not just reporting what you have observed. The description of two people running would be preferred in a scientific report.

This distinction between description and inference in reporting can be carried to extremes. For example, describing what is shown in Figure 2.2 as running could be considered an inference, the actual observation being that two people are moving their legs up and down and forward in rapid, long strides. Such a literal description also would not be appropriate. The point is that, in scientific reporting, observers must guard against a tendency to draw inferences too quickly. Further, events should be described in sufficient detail without including trivial and unnecessary minutiae. Proper methods for making observations and reporting them will be discussed in Chapter 4.

Scientific reporting seeks to be unbiased and objective. One way to determine whether a report is unbiased is to see if it can be verified by an independent observer. This is called “interobserver agreement” (see Chapter 4). Unfortunately, many biases are subtle and not always detected even in scientific reporting. Consider the fact that there is a species of fish in which the eggs are incubated in the mouth of the male parent until they hatch. The first scientist to observe the eggs disappear into their father’s mouth could certainly be forgiven for assuming, momentarily, that he was eating them. That’s simply what we expect organisms to do with their mouths! But the careful observer waits, watches for unexpected results, and takes nothing for granted.

Instruments

You depend on instruments to measure events more than you probably realize. For example, you rely on the speedometer in a car and the clock in your bedroom, and you can appreciate the problems that arise when these instruments are inaccurate. Accuracy refers to the difference between what an instrument says is true and what is known to be true. Inaccurate clocks can make us late, and inaccurate speedometers can earn us traffic tickets. The accuracy of an instrument is determined by calibrating it, or checking it with another instrument known to be true. In addition, measurements can be made at varying levels of precision. A measure of time in tenths of a second is not as precise as one that is in hundredths of a second.

We also need instruments to measure behavior. You can be assured that the precision, and even the accuracy, of instruments used in psychology have improved significantly since 1879, the founding of the first psychology laboratory. Today, many sophisticated instruments are used in contemporary psychology (Figure 2.3). Psychophysiology experiments (e.g., when assessing a person’s arousal level) require instruments that give accurate measures of such internal states as heart rate and blood pressure. Questionnaires and tests are popular instruments used by psychologists to measure behavior. So, too, are
the rating scales used by human observers. For instance, rating aggression in children on a 7-point scale ranging from not at all aggressive (1) to very aggressive (7) can yield relatively accurate (although perhaps not precise) measures of aggression. It is the responsibility of the behavioral scientist to use instruments that are as accurate and as precise as possible.

Measurement

Scientists use two types of measurements to record the controlled observations that characterize the scientific method. One type of scientific measurement, *physical measurement*, involves dimensions for which there is an agreed-upon standard and measurement instrument. For example, length is a dimension with agreed-upon standards for units of length (e.g., inches, meters) and measurement instruments (e.g., a ruler). Similarly, units of weight and time represent physical measurement.

Most psychological research, however, does not involve physical measurement. Rulers do not exist for measuring psychological constructs such as beauty, aggression, or intelligence. These dimensions require a second type of measurement—*psychological measurement*. In a sense, the human observer is the instrument for psychological measurement. More specifically, *agreement among a number of observers provides the basis for psychological measurement*. For example, if several independent observers agree that a certain action warrants a rating of 3 on a 7-point rating scale of aggression, that is a psychological measurement of the aggressiveness of the action.
Measurements must be valid and reliable. In general, **validity** refers to the “truthfulness” of a measure. A valid measure of a construct is one that measures what it claims to measure. Suppose a researcher defines intelligence in terms of how long a person can balance a ball on his or her nose. According to the principle of “operationalism,” this is a perfectly permissible operational definition. However, most of us would question whether such a balancing act is really a valid measure of intelligence. The validity of a measure is supported when people do as well on it as on other tasks presumed to measure the same construct. For example, if time spent balancing a ball is a valid measure of intelligence, then a person who does well on the balancing task should also do well on other accepted measures of intelligence.

The **reliability** of a measurement is indicated by its consistency. There are several kinds of reliability. When we speak of instrument reliability, we are discussing whether an instrument works consistently. A car that sometimes starts and sometimes doesn’t is not very reliable. Observations made by two or more independent observers are said to be reliable if they agree—that is, if the observations are consistent from one observer to another. For example, researchers asked 50 college students to examine photos of students from a different university and rate the extent to which those students appeared trustworthy using a 7-point scale (1 = *not at all* and 7 = *very trustworthy*). Results indicated very high agreement among the raters, indicating that trustworthiness can be reliably measured (Rule, Krendl, Ivcevic, & Ambady, 2013). Interestingly, the students who had been photographed also completed a set of research tasks, including a brief test in which they were given an opportunity to cheat by using more time than allowed. More than half (57%) of the students cheated on the test. The researchers found that ratings of trustworthiness were completely unrelated to whether students cheated or not. Thus, reliable measurement does not always mean the measure is valid.

The validity and reliability of measurements are central issues in psychological research. We will describe various ways in which researchers determine the reliability and validity of their measures as we introduce you to different research methods.

Hypotheses

A hypothesis is a tentative explanation for something. Hypotheses frequently attempt to answer the questions “How?” and “Why?” At one level, a hypothesis may simply suggest how particular variables are related. For example, an emerging area of psychological research asks, Why do people purchase “green” products, especially when these products are often more expensive and may be less luxurious or effective than conventional, nongreen products? An example is the successful Toyota Prius, which is as expensive as cars that are more comfortable and perform better. One hypothesis for green purchases relates to altruism, the tendency toward selfless acts that benefit others (Griskevicius, Tybur, & Van den Bergh, 2010). Purchasing green products can be seen as altruistic because the environment and society benefit, with a greater cost to the selfless purchaser.
Recent theorists describe “competitive altruism,” in which individuals are altruistic because being seen as prosocial and selfless enhances one’s reputation and status in society (Griskevicius et al., 2010). Thus, altruistic acts, such as purchasing green products, may signal one’s higher status—that one has the time, energy, wealth, and other resources to behave altruistically. Griskevicius et al. hypothesized that activating (i.e., making prominent) people’s desire for status should lead them to choose green products over more luxurious nongreen products.

Griskevicius et al. (2010) conducted three experiments to test their hypothesis. In each, they manipulated college student participants’ motivation for status using two conditions: status and control. Status motives were activated by having participants in this condition read a short story about graduating from college, searching for a job, and then working for a desirable company with opportunities for promotion. In the control condition, participants read a story about searching for a lost concert ticket, finding it, and then attending the concert. After reading the story, participants believed they were completing a second, unrelated study about consumer preferences. They identified items they would likely purchase (e.g., car, dishwasher, backpack); in each case, a green product was paired with a nongreen, more luxurious item. Griskevicius et al. found that compared to the control condition, activating status motives increased the likelihood that participants would choose green products over the nongreen products (Experiment 1). Furthermore, the preference for green products occurred only when status-motivated participants imagined shopping in public, but not in private (online) situations (Experiment 2), and when green products cost more than nongreen products (Experiment 3).

At a theoretical level, a hypothesis may offer a reason (the “why”) for the way particular variables are related. Griskevicius and his colleagues found a relationship between two variables: status motives and the likelihood of purchasing green products. Based on theories of competitive altruism, these variables are related because people gain social status when they are seen to behave altruistically, such as when purchasing green products. One practical implication for this finding is that sales of green products may be enhanced by linking these products with high status (e.g., celebrity endorsements), rather than by emphasizing the plight of the environment or by making green products less expensive.

Nearly everyone has proposed hypotheses to explain some human behavior at one time or another. Why do people commit apparently senseless acts of violence? What causes people to start smoking cigarettes? Why are some students academically more successful than others? One characteristic that distinguishes casual, everyday hypotheses from scientific hypotheses is testability. If a hypothesis cannot be tested, it is not useful to science (Marx, 1963). Three types of hypotheses fail to pass the “testability test.” A hypothesis is not testable when its constructs are not adequately defined, when the hypothesis is circular, or when the hypothesis appeals to ideas not recognized by science.
Hypotheses are not testable if the concepts to which they refer are not adequately defined or measured. For example, to say that a would-be assassin shot a prominent figure or celebrity because the assassin is mentally disturbed is not a testable hypothesis unless we can agree on a definition of “mentally disturbed.” Unfortunately, psychologists and psychiatrists cannot always agree on what terms such as “mentally disturbed” mean because an accepted operational definition is often not available for these concepts. You may have learned in a psychology course that many of Freud’s hypotheses are not testable. This is because there are no clear operational definitions and measures for key constructs in Freud’s theories, such as id, ego, and superego.

Hypotheses are also untestable if they are circular. A circular hypothesis occurs when an event itself is used as the explanation of the event (Kimble, 1989, p. 495). As an illustration, consider the statement that an “eight-year-old boy is distractable in school and having trouble reading because he has an attention deficit disorder.” An attention deficit disorder is defined by the inability to pay attention. Thus, the statement simply says that the boy doesn’t pay attention because he doesn’t pay attention—that’s a circular hypothesis.

A hypothesis also may be untestable if it appeals to ideas or forces that are not recognized by science. Science deals with the observable, the demonstrable, the empirical. To suggest that people who commit horrendous acts of violence are controlled by the Devil is not testable because it invokes a principle (the Devil) that is not in the province of science. Such hypotheses might be of value to philosophers or theologians, but not to the scientist.

Goals of the Scientific Method

- The scientific method is intended to meet four goals: description, prediction, explanation, and application.

In the first part of this chapter, we examined the ways in which our everyday ways of thinking differ from the scientific method. In this next section, we examine goals of the scientific method. Psychologists use the scientific method to meet four research goals: description, prediction, explanation, and application (see Table 2.2).

Description

- Psychologists seek to describe events and relationships between variables; most often, researchers use the nomothetic approach and quantitative analysis.

Description refers to the procedures researchers use to define, classify, catalogue, or categorize events and their relationships. Clinical research, for instance, provides practitioners with criteria for classifying mental disorders. Many of these are found in the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (5th ed., 2013), also known as DSM-5 (see Figure 2.4). Consider, as one example, the criteria used to define the disorder labeled selective mutism.
TABLE 2.2 FOUR GOALS OF PSYCHOLOGICAL RESEARCH

<table>
<thead>
<tr>
<th>Goal</th>
<th>What Is Accomplished</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Researchers define, classify, catalogue, or categorize events and relationships to describe mental processes and behavior.</td>
<td>Psychologists describe symptoms of helplessness in depression, such as failure to initiate activities and pessimism regarding the future.</td>
</tr>
<tr>
<td>Prediction</td>
<td>When researchers identify correlations among variables they are able to predict mental processes and behavior.</td>
<td>As level of depression increases, individuals exhibit more symptoms of helplessness.</td>
</tr>
<tr>
<td>Explanation</td>
<td>Researchers understand a phenomenon when they can identify the cause(s).</td>
<td>Participants exposed to unsolvable problems become more pessimistic and less willing to do new tasks (i.e., become helpless) than participants who are asked to do solvable problems.</td>
</tr>
<tr>
<td>Application</td>
<td>Psychologists apply their knowledge and research methods to change people’s lives for the better.</td>
<td>Treatment that encourages depressed individuals to attempt tasks that can be mastered or easily achieved decreases depressives’ helplessness and pessimism.</td>
</tr>
</tbody>
</table>

Based on Table 1.2, Zechmeister, Zechmeister, & Shaughnessy, 2001, p. 12.

Diagnostic Criteria for Selective Mutism

(a) Consistent failure to speak in specific social situations in which there is an expectation for speaking (e.g., at school) despite speaking in other situations.

(b) The disturbance interferes with educational or occupational achievement or with social communication.

(c) The duration of the disturbance is at least one month (not limited to the first month of school).

(d) The failure to speak is not attributable to a lack of knowledge of, or comfort with, the spoken language required in the social situation.

(e) The disturbance is not better explained by a communication disorder (e.g., childhood-onset fluency disorder) and does not occur exclusively during the course of autism spectrum disorder, schizophrenia, or another psychotic disorder. (DSM-5, 2013, p. 195)

The diagnostic criteria used to define selective mutism provide an operational definition for this disorder. Selective mutism is relatively rare; thus, we typically rely on “case studies” to learn about individuals with this disorder. Researchers also seek to provide clinicians with descriptions of the prevalence of a mental disorder as well as the relationship between the presence of various symptoms and other variables such as gender and age. For example, research suggests that selective mutism is seen most often among young children, and because of the strong association between selective mutism and social anxiety,
the diagnosis is now classified among anxiety disorders (DSM-5, 2013). In Chapter 9 we will consider a research design used by psychologists to treat a young girl with selective mutism.

Science, including psychological science, develops descriptions of phenomena using the *nomothetic approach*. "Nomothetic" refers to the discovery of general scientific laws. Psychologists try to establish broad generalizations and general laws of behavior that apply to a diverse population. To accomplish this goal, psychological studies most often involve large numbers of participants. Researchers seek to describe the "average," or typical, performance of a group. This average may or may not describe the performance of any one individual in the group.

For example, one goal of a large cross-cultural study was to describe the extent of helping in large cities around the world (Levine, Norenzayan, & Philbrick, 2001). Researchers created three helping situations in downtown settings to record whether citizens helped. In each country, an experimenter (1) acted the role of a blind person attempting to cross a street; (2) failed to notice he had accidentally dropped a pen while walking; and (3) while wearing a large leg brace, accidentally dropped and struggled to pick up a pile of magazines. In all, 1,198 people were observed in one of these situations across 23 cities. Results for the study are shown in Figure 2.5. On average, people in Rio de Janeiro demonstrated the greatest amount of helping and citizens of Kuala Lumpur the least. New York City ranked second to last. These findings do not indicate that *all* people in Rio de Janeiro are helpful, nor are all people in Kuala Lumpur...

FIGURE 2.4 Clinicians classify mental disorders according to the criteria found in the American Psychiatric Association’s *Diagnostic and Statistical Manual of Mental Disorders.*
unhelpful. These findings indicate that in general or on average, the extent to which individuals help differs across the 23 cities in this study.

Researchers who use the nomothetic approach appreciate that there are important differences among individuals; they seek, however, to emphasize the similarities rather than the differences. For example, a person’s individuality is not threatened by our knowledge that that person’s heart, like the hearts of other human beings, is located in the upper left chest cavity. Similarly, we do not deny a person’s individuality when we state that that person’s behavior is influenced by patterns of reinforcement (e.g., rewards, punishments). Researchers merely seek to describe what organisms are like in general on the basis of the average performance of a group of different organisms.

Some psychologists, notably Gordon Allport (1961), argue that the nomothetic approach is inadequate—unique individuals cannot be described by an average value. Researchers who use the idiographic approach study the individual rather than groups. These researchers believe that although individuals behave in ways that conform to general laws or principles, the uniqueness
of individuals must also be described. A major form of idiographic research is single-case research, which we will describe in Chapter 9.

Depending on their research question, researchers decide whether to describe groups of individuals or one individual’s behavior. Although many researchers do mainly one or the other kind of research, others may do both. A clinical psychologist, for instance, may decide to pursue mainly idiographic investigations of a few clients in therapy but consider nomothetic issues when attempting to answer research questions with a large group of research participants. Another decision that the researcher must make is whether to do quantitative or qualitative research. Quantitative research refers to studies in which the findings are described using statistical summary and analysis. Qualitative research produces verbal summaries of research findings with few statistical summaries or analysis. Just as psychological research is more frequently nomothetic than idiographic, it is also more typically quantitative than qualitative.

Qualitative research is used extensively by sociologists, anthropologists, and psychologists. While there is no single way to conduct qualitative research studies (Silverman, 2011), researchers using this approach typically look for meaningful themes and categories in a narrative record, then provide a verbal summary of their observations. Qualitative research often focuses on events in their context and frequently is based on personal interviews and comprehensive records obtained from direct observation of behavior. More recent analyses include Internet sources, such as messages in chat rooms. When conducting interviews, qualitative researchers may ask participants to describe their experiences in ways that are meaningful to them, rather than asking participants to answer questions using categories and dimensions established by theorists and previous research (Kidd, 2002). This qualitative approach was used by Kidd and Kral (2002) to gain insight into the experiences of 29 Toronto street youth (ages 17–24). A focus of the interviews concerned experiences with suicide. The majority (76%) of those interviewed reported a history of attempted suicide, and analysis of their narratives revealed that suicidal experiences were linked especially to feelings of isolation, rejection/betrayal, low self-worth, and prostitution. Importantly, the researchers reported that their analyses revealed several topics associated with suicidal experiences not identified in previous research involving street youth. Namely, “loss of control, assault during prostituted sex, drug abuse as a ‘slow suicide,’ and breakups in intimate relationships” were related to these youths’ suicidal experiences (p. 411). Other examples of qualitative research are found in Chapter 4 when we discuss narrative records of observed behavior; case studies described in Chapter 9 also are a form of qualitative research.

Prediction

- Correlational relationships allow psychologists to predict behavior or events, but do not allow psychologists to infer what causes these relationships.

Description of events and their relationships often provides a basis for prediction, the second goal of the scientific method. Many important questions in
psychology call for predictions. For example: Does the early loss of a parent make a child especially vulnerable to depression? Are children who are overly aggressive likely to have emotional problems as adults? Do stressful life events lead to increased physical illness? Research findings suggest the answer to all of these questions is “yes.” This information not only adds valuable knowledge to the discipline of psychology, but also is helpful in both the treatment and prevention of emotional disorders. In addition, an important occupation for many psychologists involves psychological testing, in which tests are used to predict future behavior and performance (e.g., on the job, in specific vocations). You are already familiar with some of these, such as the tests used for admission into college and professional schools.

When scores on one variable can be used to predict scores on a second variable, we say that the two variables are correlated. A **correlation** exists when two different measures of the same people, events, or things vary together—that is, when particular scores on one variable tend to be associated with particular scores on another variable. When this occurs, the scores are said to “covary.” For example, stress and illness are known to be correlated; the more stressful life events people experience, the more likely they are to experience physical illnesses.

Consider a measure with which you likely have had some experience, namely, teacher/course evaluations in classes you have taken. Researchers asked how well ratings of teachers by students not enrolled in the class would correlate with end-of-the-semester evaluations made by students in the class (Ambady & Rosenthal, 1993). They showed video clips (without sound) of teachers to a group of female undergraduates for only 30 seconds, 10 seconds, or just 6 seconds (across several studies). The researchers found that teacher evaluations based on these “thin slices of nonverbal behavior” correlated well with students’ end-of-the-semester teacher evaluations. That is, more positive course evaluations of teachers were associated with higher ratings for their videotaped behavior; similarly, more negative course evaluations were associated with lower ratings of videotaped behavior. Thus, we can predict course evaluations of teachers’ affective behavior (e.g., likableness) based on ratings of briefly depicted videotaped behavior. These results indicate that observers can make relatively accurate judgments of affective behavior (e.g., likeableness) very quickly.

It is important to point out that successful prediction doesn’t always depend on knowing why a relationship exists between two variables. Consider the report that some people rely on observing animal behavior to help them predict earthquakes. Certain animals apparently behave in an unusual manner just before an earthquake. The dog that barks and runs in circles and the snake seen fleeing its hole, therefore, may be reliable predictors of earthquakes. If so, they could be used to warn people of forthcoming disasters. We might even imagine that in areas where earthquakes are likely, residents would be asked to keep certain animals under observation (as miners once kept canaries) to warn them of conditions of which they are as yet unaware. This would not require that we understand why certain animals behave strangely before an earthquake, or even...
why earthquakes occur. Furthermore, we would never argue that an animal’s strange behavior caused an earthquake.

In their study of cross-cultural differences in helping behavior, Levine et al. (2001) noted that the extent of helping in a city could be predicted by an indicator of economic well-being concerning the purchasing power of citizens’ income (“how far a dollar will go”). People were more likely to help when the purchasing power in a city was lower. Although they cannot argue that low purchasing power causes helping, these researchers speculated that when a country does not have a strong economy, traditional value systems may mandate helping behaviors.

Building on this idea that traditional values may explain differences in helping across cultures, another set of researchers investigated the concept of “embedded cultures” (Knafo, Schwartz, & Levine, 2009). An embedded culture is one in which individuals gain meaning in life through their identification with their family or an in-group. Embedded individuals focus on the welfare of group members, with less concern for people outside the group (such as strangers with a hurt leg or needing help locating a pen). These investigators measured cultural embeddedness for the 23 cities for which helping behaviors were observed in the earlier study. As hypothesized, the more embedded a culture, the less likely were people to help the stranger. Although this correlational finding supports the proposed explanation that traditional, embedded values influence people’s helping behavior, additional evidence is needed to make a statement that these values cause differences in helping across cultures.

Explanation

- Psychologists understand the cause of a phenomenon when the three conditions for causal inference are met: covariation, time-order relationship, and elimination of plausible alternative causes.
- The experimental method, in which researchers manipulate independent variables to determine their effect on dependent variables, establishes time order and allows a clearer determination of covariation.
- Plausible alternative causes for a relationship are eliminated if there are no confoundings in a study.
- Researchers seek to generalize a study’s findings to describe different populations, settings, and conditions.

Although description and prediction are important goals in science, they are only the first steps in our ability to explain and understand a phenomenon. Explanation is the third goal of the scientific method. We understand and can explain a phenomenon when we can identify its causes. Researchers typically conduct experiments to identify the causes of a phenomenon. Many people use the word “experiment” when speaking about research in general, but this is incorrect. Experimental research differs from descriptive and predictive (correlational) research because of the high degree of control scientists seek in experiments. Recall that when researchers control a situation, they manipulate
independent variables one at a time to determine their effect on the dependent variable—the phenomenon of interest. By conducting controlled experiments, psychologists infer what causes a phenomenon; they make a causal inference. Because experiments are very important to psychologists’ efforts to form causal inferences, we have dedicated Chapters 6, 7, and 8 to a detailed discussion of the experimental method.

Scientists set three important conditions for making a causal inference: covariation of events, a time-order relationship, and the elimination of plausible alternative causes. A simple illustration will help you to understand these three conditions. Suppose you hit your head on a door and experience a headache; presumably you would infer that hitting your head caused the headache. The first condition for causal inference is covariation of events. If one event is the cause of another, the two events must vary together; that is, when one changes, the other must also change. In our illustration, the event of changing your head position from upright to hitting against the door must covary with experience of no headache to the experience of a headache.

The second condition for a causal inference is a time-order relationship (also known as contingency). The presumed cause (hitting your head) must occur before the presumed effect (headache). If the headache began before you hit your head, you wouldn’t infer that hitting your head caused the headache. In other words, the headache was contingent on you hitting your head first. Finally, causal explanations are accepted only when other possible causes of the effect have been ruled out—when plausible alternative causes have been eliminated. In our illustration, this means that to make the causal inference that hitting your head caused the headache, you would have to consider and rule out other possible causes of your headache (such as reading a difficult textbook).

Unfortunately, people have a tendency to conclude that all three conditions for a causal inference have been met when really only the first condition is satisfied. For example, it has been suggested that parents who use stern discipline and physical punishment are more likely to have aggressive children than are parents who are less stern and use other forms of discipline. Parental discipline and children’s aggressiveness obviously covary. Moreover, the fact that we assume parents influence how their children behave might lead us to think that the time-order condition has been met—parents use physical discipline and children’s aggressiveness results. It is also the case, however, that young children vary in how active and aggressive they are and that the child’s behavior has a strong influence on the parents’ responses in trying to exercise control. In other words, some children may be naturally aggressive and require stern discipline rather than stern discipline producing aggressive children. Therefore, the direction of the causal relationship may be opposite to what we thought at first.

A key component for making a causal inference is comparing outcomes in two or more conditions. For example, suppose a teacher wished to demonstrate that using personal response systems (“clickers”) in the classroom helps students learn. She could ask questions in class that require a response on the clicker, and then describe the test performance of students following this
classroom technique. But, at this point, what would she know? Perhaps another group of students taught using a different approach might learn the same amount. Before the teacher could claim that clickers caused the performance she observed, she would have to compare this method with some other reasonable approach. That is, she would look for a difference in learning between the group using clickers and a group not using this method. Such a finding would show that teaching strategy and performance covary. When a controlled experiment is done, a bonus comes along when the independent and dependent variables covary. The time-order condition for a causal inference is met because the researcher manipulates the independent variable (e.g., teaching method) and subsequently measures the differences between conditions on the dependent variable (e.g., a measure of student learning).

By far the most challenging condition researchers must meet in order to make a causal inference is eliminating other plausible alternative causes. Consider a study in which the effect of two different teaching approaches (clicker and no-clicker) is assessed. Suppose the researcher assigns students to teaching conditions by using clickers in the morning section of a course, and does not use clickers in the afternoon section. If this were done, any difference between the two groups could be due either to the teaching method or to the different sections, morning vs. afternoon. Thus, the researcher would not be able to determine whether the difference in performance between the two groups was due to the independent variable she tested (clicker or no-clicker) or to the alternative explanation of differences among students in the two sections. Said more formally, the independent variable of teaching method would be “confounded” with the independent variable of course section. Confounding occurs when two potentially effective independent variables are allowed to covary simultaneously. When research is confounded, it is impossible to determine what variable is responsible for any obtained difference in performance.

Researchers seek to explain the causes of phenomena by conducting experiments. However, even when a carefully controlled experiment allows the researcher to form a causal inference, additional questions remain. One important question concerns the extent to which the findings of the experiment apply only to the people who participated in the experiment. Researchers often want to generalize their findings to describe people who did not participate in the experiment.

Many of the participants in psychology research are introductory psychology students in colleges and universities. Are psychologists developing principles that apply only to college freshmen and sophomores? Similarly, laboratory research is often conducted under more controlled conditions than are found in natural settings. Thus, an important task of the scientist is to determine whether laboratory findings generalize to the “real world.” Some people automatically assume that laboratory research is useless or irrelevant to real-world concerns. However, as we explore research methods throughout this text, we will see that these views about the relationship between laboratory science and the real world are not helpful or satisfying. Instead, psychologists recognize the importance of both: Findings from laboratory experiments help to explain...
phenomena, and this knowledge is applied to real-world problems in research and interventions.

Application

- In applied research, psychologists apply their knowledge and research methods to improve people's lives.
- Psychologists conduct basic research to gain knowledge about behavior and mental processes and to test theories.

The fourth goal of research in psychology is application. Although psychologists are interested in describing, predicting, and explaining behavior and mental processes, this knowledge doesn't exist in a vacuum. Instead, this knowledge exists in a world in which people suffer from mental disorders and are victims of violence and aggression, and in which stereotypes and prejudices impact how people live and function in society (to name but a few problems we face). The list of problems in our world may at times seem endless, but this shouldn't discourage us. The breadth of psychologists' research questions and findings provides many ways for researchers to help address important aspects of our lives and to create change in individuals' lives.

Research on creating change is often called “applied research.” In **applied research**, psychologists conduct research in order to change people's lives for the better. For people suffering from mental disorders, this change may occur through research on therapeutic techniques. However, applied psychologists are involved with many different types of interventions, including those aimed at improving the lives of students in schools, employees at work, and individuals in the community. On the other hand, researchers who conduct **basic research** seek primarily to understand behavior and mental processes. People often describe basic research as “seeking knowledge for its own sake.” Basic research is typically carried out in a laboratory setting with the goal of testing a theory about a phenomenon.

Throughout the history of psychology, tension has existed between basic research and applied research. Within the past several decades, however, researchers have increased their focus on important, creative applications of psychological principles for improving human life (Zimbardo, 2004). In fact, the application of well-known principles of psychology—discovered through basic research—is now so pervasive that people tend to forget the years of basic research in laboratories that preceded what we now understand to be commonplace. For example, the use of positive reinforcement techniques, psychological testing and therapies, and self-help practices has become part of everyday life. In addition, the application of psychological principles is becoming increasingly important in education, health, and criminal justice settings. To see some of the many applications of psychology in our everyday life, check out this website: www.apa.org/research/action.

One important factor ties together basic and applied research: the use of theories to guide research and application in the real world. In the next section we describe how psychological theories are developed.
Theories are “ideas” about how nature works. Psychologists propose theories about the nature of behavior and mental processes, as well as about the reasons people and animals behave and think the way they do. A psychological theory can be developed using different levels of explanation; for example, the theory can be developed on either a physiological or a conceptual level (see Anderson, 1990; Simon, 1992). A physiologically based theory of schizophrenia would propose biological causes such as specific genetic carriers. A theory developed on a conceptual level would more likely propose psychological causes such as patterns of emotional conflict or stress. It would also be possible for a theory of schizophrenia to include both biological and psychological causes.

Theories differ in their scope—the range of phenomena they seek to explain. Theories with a broad scope try to describe and explain complex phenomena such as love or human cognition. In general, the greater the scope of a theory, the more complex it is likely to be. Most theories in contemporary psychology, however, tend to be relatively modest in scope, attempting to account for a limited range of phenomena. For example, the theory of “flashbulb memory” attempts to explain people’s memory for very specific personal details surrounding surprising and emotional events, such as the horrific events of September 11, 2001 (Brown & Kulik, 1977).

Scientists develop theories from a mixture of intuition, personal observation, and known facts and ideas. The famous philosopher of science, Karl Popper (1976), suggested that truly creative theories spring from a combination of intense interest in a problem and critical imagination—the ability to think critically and “outside the box.” Researchers begin constructing a theory by considering what is known about a problem or research question and also looking for errors or what is missing. The approach is similar to the one we described in Chapter 1 for getting started in research and forming hypotheses.

Although theories differ in their level of explanation and scope, amid these differences there are commonalities that define all theories (see Table 2.3). We can offer the following formal definition of a scientific **theory**: a logically
organized set of propositions (claims, statements, assertions) that serves to define events (concepts), describe relationships among these events, and explain the occurrence of these events. For example, a theory of flashbulb memory must state exactly what a flashbulb memory is and how a flashbulb memory differs from typical memories. The theory would include descriptions of relationships, such as the relationship between degree of emotional involvement and amount remembered (e.g., Talarico & Moore, 2012). Finally, the theory would also have to explain why in some cases a person’s so-called flashbulb memory is clearly wrong, even though the individual is very confident about the (inaccurate) memory (see Neisser & Harsch, 1992). Such was the case in a study that examined people’s memory of the September 11 attacks one and two years after the event (Conway, Skitka, Hemmerich, & Kershaw, 2009). Despite a decrease in the accuracy and consistency of their memories over time, participants maintained a high degree of confidence in their flashbulb memory.

The major functions of a theory are to organize empirical knowledge and to guide research (Marx, 1963). Even in relatively specific areas of research such as flashbulb memories, many studies have been done. As the scope of a research area increases, so does the number of relevant studies. Scientific theories are important because they provide a logical organization of many research findings and identify relationships among findings. This logical organization of findings guides researchers as they identify testable hypotheses for their future research.

Theories frequently require that we propose intervening processes to account for observed behavior. These intervening processes provide a link between the independent variables researchers manipulate and the dependent variables they subsequently measure. Because these processes “go between” the independent and dependent variables, they are called intervening variables. You probably are familiar with what we mean by an intervening variable if you think about your computer use. As you press keys on the keyboard, click the mouse, or tap a touchpad, you see (and hear) various outcomes on the
screen printer, and from the speakers. Yet it isn’t your keystrokes and taps that directly cause these outcomes; the intervening variable is the “invisible” software applications that serve as a connection between your actions and the outcome on your screen.

Intervening variables are like computer applications. Corresponding to the connection between keystrokes and what you see on your screen, intervening variables connect independent and dependent variables. Another familiar example from psychology is the construct of “thirst.” For example, a researcher might manipulate the number of hours participants are deprived of liquid and, after the specified time, measure the amount of liquid consumed. Between the deprivation time and the time participants are allowed to drink liquid, we may say that the participants are “thirsty”—the psychological experience of needing to replenish body fluids. Thirst is a construct that allows theorists to connect variables such as the number of hours deprived of liquid (the independent variable) and the amount of liquid consumed (the dependent variable). Intervening variables such as thirst not only link independent and dependent variables; intervening variables also are used to explain why the variables are connected. Thus, intervening variables play an important role when researchers use theories to explain their findings.

Intervening variables and theories are useful because they allow researchers to identify relationships among seemingly dissimilar variables. Other independent variables likely influence “thirst” (see Figure 2.6). Consider, for example, a different independent variable: amount of salt consumed. On the surface, these two independent variables—number of hours deprived of liquid and amount of salt consumed—are very dissimilar. However, both influence subsequent consumption of liquid and can be explained by the intervening variable of thirst. Other independent variables related to liquid consumption include amount of exercise and temperature; the more exercise or the higher the temperature, the more people are “thirsty” and the more liquid they consume. Although these examples emphasize independent variables, it’s important to note that dependent variables also play a role in theory development. Thus, rather than measuring “liquid consumption” as the dependent variable, inventive researchers may measure other effects related to the psychological experience of thirst. For example, when deprived of liquid, individuals may go to greater

FIGURE 2.6 Potential independent variables (left) may influence the intervening variable of “thirst,” as measured by potential dependent variables (right).
efforts to obtain liquid or may even drink liquids that taste bitter. Thus, effort to obtain liquids or the amount of bitterness in the liquid could be measured as dependent variables.

Intervening variables are critical to theory development in psychology. In our example, the apparently dissimilar variables in Figure 2.6 can be united in one theory that relies on the intervening variable “thirst.” Other examples of intervening variables—and theories—abound in psychology. The intervening variable “depression,” for example, connects the factors theorized to cause depression (e.g., neurological factors, exposure to trauma) and the various symptoms (e.g., sadness, hopelessness, sleep and appetite disturbance). Similarly, “memory” as an intervening variable is used to explain the relationship between the amount (or quality) of time spent studying and later performance on a test. As you will learn in your study of psychology, intervening variables provide the key that unlocks the complex relationships among variables.

How we evaluate and test scientific theories is one of the most difficult issues in psychology and philosophy (e.g., Meehl, 1978, 1990a, 1990b; Popper, 1959). Kimble (1989) has suggested a simple and straightforward approach. He says, “The best theory is the one that survives the fires of logical and empirical testing” (p. 498). Scientists first evaluate a theory by considering whether it is logical. That is, they determine whether the theory makes sense and whether its propositions are free of contradictions. The logical consistency of theories is tested through the lens of the critical eye of the scientific community.

The second “fire” that Kimble (1989) recommends for evaluating theories is to subject hypotheses derived from a theory to empirical tests. Successful tests of a hypothesis increase the acceptability of a theory; unsuccessful tests decrease the theory’s acceptability. But there are serious obstacles to testing hypotheses and, as a consequence, to confirming or disconfirming scientific theories. For example, a theory, especially a complex one, may produce many testable hypotheses. A theory is not likely to fail on the basis of a single test. Moreover, theories may include concepts that are not adequately defined or suggest complex relationships among intervening variables and behavior. Such theories may have a long life, but their value to science is questionable (Meehl, 1978). Ultimately, the scientific community determines whether any test of a theory is definitive.

In general, theories that provide precision of prediction are likely to be much more useful (Meehl, 1990a). For example, a theory that predicts that children will typically demonstrate abstract reasoning by age 12 is more precise (and testable) in its predictions than a theory that predicts the development of abstract reasoning by ages 12 to 20. When constructing and evaluating a theory, scientists also place a premium on parsimony (Marx, 1963). The rule of parsimony is followed when the simplest of alternative explanations is accepted. Scientists prefer theories that provide the simplest explanations for phenomena.

In summary, a good scientific theory is one that is able to pass the most rigorous tests. Somewhat counterintuitively, rigorous testing will be more informative when researchers do tests that seek to falsify a theory’s propositions than when they do tests that seek to confirm them (Shadish, Cook, & Campbell, 2002). Although tests that confirm a particular theory’s propositions
do provide support for the specific theory that is being tested, confirmation logically does not rule out other, alternative theories of the same phenomenon. Tests of falsification are the best way to prune a theory of its dead branches. Constructing and evaluating scientific theories is at the core of the scientific enterprise and is absolutely essential for the healthy growth of the science of psychology.

Summary

As an approach to knowledge, the scientific method is characterized by the use of empirical procedures rather than intuition, and by an attempt to control the investigation of those factors believed responsible for a phenomenon. Scientists gain the greatest control when they conduct an experiment. In an experiment, those factors that are systematically manipulated in an attempt to determine their effect on behavior are called independent variables. The measures of behavior used to assess the effect (if any) of the independent variables are called dependent variables.

Scientists seek to report results in an unbiased and objective manner. This goal is enhanced by giving operational definitions to concepts. Psychological researchers refer to concepts as “constructs.” Scientists also use instruments that are as accurate and precise as possible. Phenomena are quantified with both physical and psychological measurement. Scientists seek measures that have both validity and reliability. Hypotheses are tentative explanations of events. To be useful to the scientist, however, hypotheses must be testable. Hypotheses that lack adequate definition, that are circular, or that appeal to ideas or forces outside the province of science are not testable. Hypotheses are often derived from theories.

The goals of the scientific method are description, prediction, explanation, and application. Both quantitative and qualitative research are used to describe behavior. Observation is the principal basis of scientific description. When two measures correlate, we can predict the value of one measure by knowing the value of the other. Understanding and explanation are achieved when the causes of a phenomenon are discovered. This requires that evidence be provided for covariation of events, that a time-order relationship exists, and that alternative causes be eliminated. When two potentially effective variables covary such that the independent effect of each variable on behavior cannot be determined, we say that the research is confounded. Even when a carefully controlled experiment allows the researcher to form a causal inference, additional questions remain concerning the extent to which the findings may generalize to describe other people and settings. In applied research, psychologists strive to apply their knowledge and research methods to improve people’s lives. Basic research is conducted to gain knowledge about behavior and mental processes and to test theories.

Scientific theory construction and testing are at the core of the scientific approach to psychology. A theory is defined as a logically organized set of propositions that serves to define events, describe relationships among these events, and explain the occurrence of the events. Theories have the important functions
of organizing empirical knowledge and guiding research by offering testable hypotheses. Intervening variables are critical to theory development in psychology because these constructs allow researchers to explain the relationships between independent and dependent variables.

KEY CONCEPTS

- control 30
- experiment 31
- independent variable 32
- dependent variable 33
- construct 33
- operational definition 34
- validity 38
- reliability 38
- correlation 45
- causal inference 47
- confounding 48
- applied research 49
- basic research 49
- theory 50

REVIEW QUESTIONS

1. For each of the following characteristics, distinguish between the scientific approach and everyday approaches to knowledge: general approach and attitude, observation, concepts, reporting, instruments, measurement, and hypotheses.
2. Differentiate between an independent variable and a dependent variable, and provide an example of each that could be used in an experiment.
3. What is the major advantage of using operational definitions in psychology? In what two ways has the use of operational definitions been criticized?
4. Distinguish between the accuracy and the precision of a measuring instrument.
5. What is the difference between the validity of a measure and the reliability of a measure?
6. Which three types of hypotheses lack the critical characteristic of being testable?
7. Identify the four goals of the scientific method and briefly describe what each goal is intended to accomplish.
8. Distinguish between the nomothetic approach and the idiographic approach in terms of who is studied and the nature of the generalizations that are sought.
9. Identify two differences between quantitative and qualitative research.
10. What are researchers able to do when they know that two variables are correlated?
11. Give an example from a research study described in the text that illustrates each of the three conditions for a causal inference. [You may use the same example for more than one condition.]
12. What is the difference between basic and applied research?
13. What is an intervening variable? Propose a psychological construct that could serve as an intervening variable between “insult” (present/absent) and “aggressive responses.” Explain how these variables might be related by proposing a hypothesis that includes your intervening variable.
14. Describe the roles of logical consistency and empirical testing in evaluating a scientific theory.
15. Explain why rigorous tests of a theory that seek to falsify a theory’s propositions can be more informative than tests that seek to confirm a theory’s propositions.
1 In each of the following descriptions of research studies, you are to identify the independent variable(s). You should also be able to identify at least one dependent variable in each study.

A A psychologist was interested in the effect of food deprivation on motor activity. She assigned each of 60 rats to one of four conditions differing in the length of time for which the animals were deprived of food: 0 hours, 8 hours, 16 hours, 24 hours. She then measured the amount of time the animals spent in the activity wheel in their cages.

B A physical education instructor was interested in specifying the changes in motor coordination that occur as children gain experience with large playground equipment (e.g., slides, swings, climbing walls). For a span of 8 weeks, preschool children were assigned to 4, 6, or 8 hours per week for time allowed on the equipment. She then tested their motor coordination by asking them to skip, jump, and stand on one foot.

C A developmental psychologist was interested in the amount of verbal behavior very young children displayed depending on who else was present. The children in the study were 3 years old. These children were observed in a laboratory setting for a 30-minute period. Half of the children were assigned to a condition in which an adult was present with the child during the session. The other half of the children were assigned to a condition in which another young child was present during the session with the child being observed. The psychologist measured the number, duration, and complexity of the verbal utterances of each observed child.

2 A psychologist conducted an experiment to test the hypothesis that individuals embedded in their in-group culture would be less likely to help a stranger. College students were recruited to respond to “a brief survey about their campus experience” near the entrance to the student activity center. The first testing session took place early in the semester. To activate identification with their university (embeddedness), these participants were given a clipboard and asked to write down three things they like about their university. Twenty students were tested. The second testing session took place on two afternoons during the last week of classes at the same location. In this control condition (low-embedded situation), 20 new students were asked to write down three things they plan to do during break.

In each condition, immediately after each participant returned the clipboard to the psychologist, a student research assistant, wearing a sweatshirt with the name of a rival school, walked by the pair and “accidentally” dropped a file containing papers near the participant. The psychologist recorded whether the participant helped pick up the papers. Results indicated that, as predicted, participants in the embedded condition were less likely to help than participants in the control condition. The psychologist concluded that identification with an in-group (embeddedness) causes people to offer less help to a stranger.

A Identify the independent variable of interest to the psychologist (and its levels) and the dependent variable.

B What potentially relevant independent variable is confounded with the psychologist’s independent variable? Explain clearly how the confounding occurred and describe the conclusions that can be made about the effects of embeddedness on helping.

C Suggest ways in which the experiment could be done so the psychologist could make a clear conclusion about the effect of identification with an in-group (embeddedness) and helping a stranger.

3 In a widely distributed news report in March 2013, researchers linked 180,000 obesity-related deaths worldwide (including about 25,000 in America) to the consumption of sugary beverages such as soda, energy, and sports drinks. Using 2010 data from the Global Burden of Diseases Study collected by the World Health Organization, the researchers investigated obesity-related deaths due to diabetes, cardiovascular disease, and cancer. They also obtained data for the per-capita consumption of sugary beverages for the countries in the health study. As sugary-beverage consumption increased, the risk of obesity-related deaths increased. The researchers claimed that overall, 1 in 100 deaths of obese people globally is caused by drinking too many sweetened beverages. Prominent nutritionists have claimed that sugary beverages are a major contributor to the obesity epidemic in the United States. These data have been used by some government officials to call for limits on the size of soft drinks (e.g., New York’s Bloomberg law).
CHAPTER 2: The Scientific Method

A The researchers claim that consumption of sugary beverages leads to an increased risk of obesity-related death, and argue that limiting sugary-beverage consumption is an important step in reducing obesity-related deaths. What evidence from this summary can be used to meet the conditions necessary for drawing this causal inference and what evidence is lacking?

B What sources beyond this summary would you want to check before reaching a conclusion about these findings? (You might begin with www.cnn.com/2013/03/19/health/sugary-drinks-deaths.)

4 A study was done to determine whether the use of “clickers” as an instructional method would improve students’ test performance in an educational psychology class (Mayer et al., 2009). In the clicker class (academic year 2005–2006), students used clickers to respond to multiple-choice questions during lectures. In the paper-and-pencil class (2006–2007), students responded to multiple-choice questions during lectures using a paper-and-pencil format. In the control condition (2004–2005), the instructor did not present multiple-choice questions in lectures. Results for the midterm and final exams indicated that students in the clicker class performed better than students in the paper-and-pencil and control classes. The researchers concluded that the use of clickers during lectures helps students to perform better on tests, and suggested that the clickers help students to engage in appropriate cognitive processing during learning.

A What evidence is present in this summary to meet the conditions for a causal inference between the instructional method and students’ test performance? What evidence is lacking? (Be sure to describe the three conditions for a causal inference.)

B Identify the four goals of the scientific method and explain whether each is met on the basis of findings from this study.

Answer to Stretching Exercise

1 The independent variable in this study is the emotion condition participants experienced after completing the hand-eye coordination task. There were three levels: gratitude, positive emotion, and neutral. The dependent variable was the number of minutes participants helped by completing the confederate’s survey.

2 An alternative explanation for the study’s finding is that participants simply felt good when the confederate fixed the computer problem and therefore helped more at the end of the experiment. To show that the specific emotion of gratitude was important, the researchers used one experimental condition, the amusing video condition, to control for positive emotions in general. That is, if simply positive emotions cause greater helping, then these participants should show greater helping also. Because only participants in the gratitude condition showed the greatest helping, the researchers can argue that gratitude specifically caused increased helping.

Answer to Challenge Question 1

A Independent variable (IV): hours of food deprivation with four levels (0, 8, 16, 24); dependent variable (DV): time (e.g., in minutes) animals spent in activity wheel

B IV: time on playground equipment with three levels: 4, 6, or 8 hours per week; DV: scores on test of motor coordination

C IV: additional person present with two levels (adult, child); DV: number, duration, and complexity of child’s verbal utterances
CHAPTER THREE

Ethical Issues in the Conduct of Psychological Research

CHAPTER OUTLINE

INTRODUCTION
ETHICAL ISSUES TO CONSIDER BEFORE BEGINNING RESEARCH
THE RISK/BENEFIT RATIO
Determining Risk
Minimal Risk
Dealing with Risk
INFORMED CONSENT
DECEPTION IN PSYCHOLOGICAL RESEARCH
DEBRIEFING
RESEARCH WITH ANIMALS
REPORTING OF PSYCHOLOGICAL RESEARCH
STEPS FOR ETHICAL COMPLIANCE
SUMMARY
CHAPTER 3: Ethical Issues in the Conduct of Psychological Research

INTRODUCTION

Good science requires good scientists. Scientists’ professional competence and integrity are essential for ensuring high-quality science. Individual scientists and the community of scientists (as represented by professional organizations such as APA and APS) share responsibility for maintaining the integrity of the scientific process. Each individual scientist has an ethical responsibility to seek knowledge and to strive to improve the quality of life. Several specific responsibilities follow from this general mandate. Scientists should

— carry out research in a competent manner;
— report results accurately;
— manage research resources honestly;
— fairly acknowledge, in scientific communications, the individuals who have contributed their ideas or their time and effort;
— consider the consequences to society of any research endeavor;
— speak out publicly on societal concerns related to a scientist’s knowledge and expertise. (Diener & Crandall, 1978)

In striving to meet these obligations, scientists face challenging and, at times, ambiguous ethical issues and questions. To guide individual psychologists in making ethical decisions, the American Psychological Association (APA) has formulated an Ethics Code, which sets standards of ethical behavior for psychologists who do research or therapy or who teach or serve as administrators (see American Psychological Association, 2002; 2010a). The Ethics Code deals with such diverse issues as sexual harassment, fees for psychological services, providing advice to the public in the media, test construction, and classroom teaching. It is also important for all students of psychology to make every effort to live up to these stated ideals and standards of behavior. You can familiarize yourself with the Ethics Code by going to the APA website: www.apa.org/ethics.

Many of the standards in the APA Ethics Code deal directly with psychological research (see especially Standards 8.01 to 8.15 of the Code), including the treatment of both humans and animals in psychological research. As with most ethics codes, the standards tend to be general in nature and require specific definition in particular contexts. More than one ethical standard can apply to a specific research situation, and at times the standards may even appear to contradict one another. For instance, ethical research requires that human participants be protected from physical injury. Research that involves drugs or other invasive treatments, however, may place participants at risk of physical harm. The welfare of animal subjects should be protected, but certain kinds of research may involve inflicting pain or other suffering on an animal. Solving these ethical dilemmas is not always easy and requires a deliberate, conscientious, problem-solving approach to ethical decision making.

The Internet has changed the way many scientists do research, and psychologists are no exception. Researchers from around the world, for example, often collaborate on scientific projects and can now quickly and easily exchange ideas and findings with one another via the Internet. Vast quantities of archival
information are accessible on thousands of Internet sites. Because researchers can collect data from human participants via the World Wide Web, there is the potential to include millions of people in one study! Types of psychological research on the Internet include simple observation (e.g., recording “behavior” in chat rooms), surveys (questionnaires, including personality tests), and experiments involving manipulated variables (see Skitka & Sargis, 2005).

Although the Internet offers many opportunities for the behavioral scientist, it also raises many ethical concerns. Major issues arise due to the absence of the researcher in an online research setting, the difficulty of obtaining adequate informed consent and providing debriefing, and concerns about protecting participant confidentiality (see especially Buchanan & Williams, 2010; Kraut et al., 2004; and Nosek, Banaji, & Greenwald, 2002, for reviews of these problems and some suggested solutions). We discuss some of these ethical issues in the present chapter and also continue this discussion in later chapters when we describe specific studies using the Internet.

Ethical decisions are best made after consultation with others, including one’s peers but especially those who are more experienced or knowledgeable in a particular area. In fact, review of a research plan by people not involved in the research is legally required in most situations. In the remaining sections of this chapter, we comment on those standards from the Ethics Code that deal specifically with psychological research. Following this discussion, we present several hypothetical research scenarios that raise ethical questions. By putting yourself in the position of having to make judgments about the ethical issues raised in these research proposals, you will begin to learn to grapple with the challenges that arise in applying particular ethical standards, and with the difficulties of ethical decision making in general. We urge you to discuss these proposals with peers, professors, and others who have had prior experience doing psychological research.

Ethical Issues to Consider Before Beginning Research

- Prior to conducting any study, the proposed research must be reviewed to determine if it meets ethical standards.
- Institutional Review Boards (IRBs) review psychological research to protect the rights and welfare of human participants.
- Institutional Animal Care and Use Committees (IACUCs) review research conducted with animals to ensure that animals are treated humanely.

Researchers must consider ethical issues before they begin a research project. Ethical problems can be avoided only by planning carefully and consulting with appropriate individuals and groups prior to doing the research. The failure to conduct research in an ethical manner undermines the entire scientific process, impedes the advancement of knowledge, and erodes the public’s respect for scientific and academic communities. It can also lead to significant legal and financial penalties for individuals and institutions. An important step that researchers must take as they begin to do psychological research is to gain institutional approval.
The 1974 National Research Act resulted in the creation of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. This act requires that institutions seeking research funds from specific federal agencies must establish committees to review research sponsored by the institution. Colleges and universities have established these committees, referred to as Institutional Review Boards (IRBs). You can review the federal regulations for IRBs at the website: www.hhs.gov/ohrp. An institution’s IRB review can ensure that researchers protect participants from harm and safeguard participants’ rights (see Figure 3.1). Federal regulations impose very specific requirements on the membership and duties of IRBs (see Federal Register, June 23, 2005). For example, an IRB must be composed of at least five members with varying backgrounds and fields of expertise. Both scientists and nonscientists must be represented, and there must be at least one IRB member who is not affiliated with the institution. Responsible members of the community, such as members of the clergy, lawyers, and nurses, are often asked to serve on these committees.

The IRB has the authority to approve, disapprove, or require modifications of the research plan prior to its approval of the research. The IRB also has the ethical responsibility to review research proposals fairly by considering the perspectives of the institution, the researcher, and the research participants (Chastain & Landrum, 1999).

In 1985 the U.S. Department of Agriculture, as well as the U.S. Public Health Service, formulated new guidelines for the care of laboratory animals (see Figure 3.2). As a result, institutions doing research with animal subjects are now required to have an Institutional Animal Care and Use Committee (IACUC). These committees must include, minimally, a scientist, a veterinarian, and at least one person not affiliated with the institution. Review of animal research by IACUCs extends to more than simply overseeing the research procedures. Federal regulations governing the conduct of animal research extend
PART I: General Issues

Nearly every college and university require that all research conducted at the institution be reviewed prior to data collection by an independent committee. Violation of federal regulations regarding the review of research involving humans or animals can bring a halt to all research at an institution, spell the loss of federal funds, and result in substantial fines (Holden, 1987). Any individual who wants to do research should inquire of the proper authorities, prior to starting research, about the appropriate procedure for institutional review. Helpful advice is available when planning to submit a research proposal to an IRB (McCallum, 2001; Newman, 2008; Pollick, 2007) or to an IACUC (LeBlanc, 2001).

THE RISK/BENEFIT RATIO

- A subjective evaluation of the risks and benefits of a research project is used to determine whether the research should be conducted.

In addition to checking if appropriate ethical principles are being followed, an IRB considers the risk/benefit ratio for a study. Society and individuals benefit from research when new knowledge is gained and when treatments are identified that improve people’s lives. There are also potential costs when research is not done. We lose the opportunity to gain knowledge and the opportunity to improve the human condition. Research can also be costly to individual participants if they are harmed during a research study. The principal investigator must, of course, be the first one to consider these potential costs and benefits. An IRB is made up of knowledgeable individuals who do not have a personal interest in the research. As such, an IRB is in a better position to determine the risk/benefit ratio and, ultimately, to decide whether to approve the proposed research.

The risk/benefit ratio asks the question “Is it worth it?” There are no mathematical answers to the risk/benefit ratio. Instead, members of an IRB rely on...
a subjective evaluation of the risks and benefits both to individual participants and to society, and ask, are the benefits greater than the risks? When the risks outweigh the potential benefits, then the IRB does not approve the research; when the benefits outweigh the risks, the IRB approves the research.

Many factors affect the decision regarding the proper balance of risks and benefits of a research activity. The most basic are the nature of the risk and the magnitude of the probable benefit to the participant, as well as the potential scientific and social value of the research (Fisher & Fryberg, 1994). Greater risk can be tolerated when clear and immediate benefits to individuals are foreseen or when the research has obvious scientific and social value. For instance, a research project investigating a new treatment for psychotic behavior may entail risk for the participants. If the proposed treatment has a good chance of providing a beneficial effect, however, then the possible benefits to both the individuals and society could outweigh the risk involved in the study.

In determining the risk/benefit ratio, researchers also consider the quality of the research, that is, whether valid and interpretable results will be produced. More specifically, “If because of the poor quality of the science no good can come of a research study, how are we to justify the use of participants’ time, attention, and effort and the money, space, supplies, and other resources that have been expended on the research project?” (Rosenthal, 1994b, p. 128). Thus, an investigator is ethically obliged to seek to do research that meets the highest standards of scientific excellence.

When there is potential risk, a researcher must make sure there are no alternative, low-risk procedures that could be substituted. The researcher must also be sure that previous research has not already successfully addressed the research question being asked. Without careful prior review of the psychological literature, a researcher might carry out research that has already been done, thus exposing individuals to needless risk.

Determining Risk

- Potential risks in psychological research include risk of physical injury, social injury, and mental or emotional stress.
- Risks must be evaluated in terms of potential participants’ everyday activities, their physical and mental health, and capabilities.

Determining whether research participants are “at risk” illustrates the difficulties involved in ethical decision making. Life itself is risky. Commuting to work or school, crossing streets, and riding elevators have an element of risk. Simply showing up for a psychology experiment has some degree of risk. To say that human participants in psychological research can never face any risks would bring all research to a halt. Decisions about what constitutes risk must take into consideration those risks that are part of everyday life.

Researchers must also consider the characteristics of the participants when they determine risk. Certain activities might pose a serious risk for some individuals but not for others. Running up a flight of stairs may increase the risk of a heart attack for an elderly person, but the same task would probably not be risky for most young adults. Similarly, individuals who are exceptionally
depressed or anxious might show more severe reactions to certain psychological tasks than would other people. Thus, when considering risk, researchers must consider the specific populations or individuals who are likely to participate in the study.

We often think of risk in terms of the possibility of physical injury. Frequently, however, participants in social science research risk social or psychological injury. For example, if participants’ personal information were revealed to others, a potential for social risk such as embarrassment exists. Personal information collected during psychological research may include facts about intelligence; personality traits; political, social, or religious beliefs; and particular behaviors. A research participant probably does not want this information revealed to teachers, employers, or peers. Failure to protect the confidentiality of participants’ responses may increase the possibility of social injury.

One risk to participants in Internet-based research is the possible disclosure of identifiable personal information outside the research situation (Kraut et al., 2004). Although the Internet affords a “perception of anonymity” (Nosek et al., 2002, p. 165), in some circumstances that perception is false, and investigators must consider ways to protect confidentiality in data transmission, data storage, and poststudy interactions with participants (see also Buchanan & Williams, 2010; Pollick, 2007).

Some psychological research may pose psychological risk if participants in the study experience serious mental or emotional stress. Imagine the stress a participant may experience when smoke enters the room in which she is waiting. The researcher may use smoke to simulate an emergency. Until the true nature of the smoke is revealed, participants may experience considerable distress. Anticipating when emotional or psychological stress may occur is not always easy.

Consider the dilemma posed when researchers seek to gather information about child abuse and interpersonal violence (see Becker-Blease & Freyd, 2006). Asking individuals to describe instances of child abuse or family violence from their past can be emotionally stressful. Yet, most researchers agree that knowledge of such experiences can help provide behavioral scientists with important insights into some of society’s ills (e.g., divorce, poor school performance, criminality) as well as guide clinical research studies. But how and when to do it? Becker-Blease and Freyd (2006) discuss the ethics of asking and not asking about abuse. They point out that not asking has its costs, too, in the form of impeding science and preventing participants from getting help or learning about normal reactions to abuse and about community resources that may help. Studies of child abuse may also help break the taboo against speaking about abuse and let victims know that these discussions can be important. In Becker-Blease and Freyd’s view, not asking “helps abusers, hurts victims” (p. 225). Thus, the cost of not asking must be importantly weighed in any risk/benefit analysis.

Simply participating in a psychology experiment is anxiety-provoking for some individuals. After learning a list of nonsense syllables (e.g., HAP, BEK), a student participant once said that he was sure the researcher now knew a great deal about him! The student assumed the psychologist was interested in learning about his personality by examining the word associations he had
used when learning the list. In reality, this person was participating in a simple memory experiment designed to measure forgetting. A researcher is obligated to protect participants from emotional or mental stress, including, when possible, stress that might arise due to participants’ misconceptions about the psychological task.

Minimal Risk

- A study is described as involving “minimal risk” when the procedures or activities in the study are similar to those experienced by participants in their everyday life.

 A distinction is sometimes made between a participant “at risk” and one who is “at minimal risk.” **Minimal risk** means that the harm or discomfort participants may experience in the research *is not greater than* what they might experience in their daily lives or during routine physical or psychological tests. As an example of minimal risk, consider the fact that many psychology laboratory studies involve lengthy computerized tests intended to assess various mental abilities. Participants may be asked to complete the tests quickly and may receive specific feedback about their performance. Although there is likely to be stress in this situation, the risk of psychological injury is likely no greater than that typically experienced by students when taking exams. Therefore, such studies would involve only minimal risk for college students. When the possibility of injury is judged to be more than minimal, individuals are considered to be *at risk* and the researcher has more serious obligations to protect their welfare.

Dealing with Risk

- Whether “at risk” or “at minimal risk,” research participants must be protected. More safeguards are needed as risks become greater.

- To protect participants from social risks, information they provide should be anonymous, or if that is not possible, the confidentiality of their information should be maintained.

Even if the potential risk is small, researchers should try to minimize risk and protect participants. For instance, simply by stating at the beginning of a memory experiment that the tasks do not measure intelligence or personality reduces the stress that some participants experience. In situations where the possibility of harm is judged to be significantly greater than that occurring in daily life, the researcher’s obligation to protect participants increases correspondingly. For example, when participants are exposed to the possibility of serious emotional stress in a psychology experiment, an IRB could require that a clinical psychologist be available to counsel individuals about their experience in the study. As you can imagine, online research poses difficult ethical dilemmas in this regard. Participants can experience emotional distress in the context of an Internet study just as they do in a laboratory-based study. However, because they are absent from the research situation, researchers may be less able to monitor distress and reduce harm during online studies. One approach might be to obtain preliminary data with the goal of identifying those who might be at risk and to exclude them from the actual study. It may be the
PART I: General Issues

In some cases, descriptive approaches involving observation or questionnaires should be used instead of experimental treatments. Researchers can also take advantage of naturally occurring "treatments" that do not involve experimentally inducing stress. Many people experience significant losses and potentially traumatic events during their life. One major focus of psychological research has been to examine how people cope with loss and trauma (e.g., Bonanno, 2004). Specific examples of this research include responses to workplace layoffs and organizational downsizing (Armstrong-Stassen, 1994; 2006), hurricane damage (Anderson, 1976), and terrorist attacks (Back, Kufner, & Egloff, 2010; Skitka, Bauman, & Mullen, 2004; Solomon, Gelkopf, & Bleich, 2005).

In order to protect research participants from social injury, data collection should keep participants’ responses anonymous by asking participants not to use their names or any other identifying information. When this is not possible, researchers should keep participants’ responses confidential by removing any identifying information from their records during the research. When the researcher must test people on more than one occasion or otherwise track specific individuals, or when information supplied by participants is particularly sensitive, code numbers can be randomly assigned to participants at the beginning of a study. Only these numbers need appear on participants’ response sheets. Names are linked with the code numbers on a master list, and access to this list is restricted by keeping it under lock and key. Online researchers need to be particularly sensitive to the possibility of electronic eavesdropping or hacking of stored data and must take appropriate precautions to minimize social risk (see Kraut et al., 2004).

STRETCHING EXERCISE I

For each of the following research situations, you are to decide whether “minimal risk” is present (i.e., risk not greater than that of everyday life) or if participants are “at risk.” If you decide that participants are “at risk,” think of recommendations you could make to the researcher that reduce risk to participants. As you do so, you will undoubtedly begin to anticipate some of the ethical issues yet to be discussed in this chapter.

1 College students are asked to complete an adjective checklist describing their current mood. The researcher is seeking to identify students who are depressed so that they can be included in a study examining cognitive deficits associated with depression.

2 Elderly adults in a nursing home are given a battery of achievement tests in the dayroom at their home. A psychologist seeks to determine if there is a decline in mental functioning with advancing age.

3 Students in a psychology research methods class see another student enter their classroom in the middle of the class period, speak loudly and angrily with the instructor, and then leave. As part of a study of eyewitness testimony, the students are then asked to describe the intruder.

4 A researcher recruits students from introductory psychology classes to participate in a study of the effects of alcohol on cognitive functioning. The experiment requires that some students drink 2 ounces of alcohol (mixed with orange juice) before performing a computer game.
Making sure participants’ responses are anonymous or confidential can also benefit the researcher if this leads participants to be more honest and open when responding (Blanck, Bellack, Rosnow, Rotheram-Borus, & Schooler, 1992). Participants may be less likely to lie or withhold information if they do not worry about who may have access to their responses.

INFORMED CONSENT

- Researchers and participants enter into a social contract, often using an informed consent procedure.
- Researchers are ethically obligated to describe the research procedures clearly, identify any aspects of the study that might influence individuals’ willingness to participate, and answer any questions participants have about the research.
- Research participants must be allowed to withdraw their consent at any time without penalties.
- Individuals must not be pressured to participate in research.
- Research participants are ethically obligated to behave appropriately during the research by not lying, cheating, or engaging in other fraudulent behavior.
- Informed consent must be obtained from legal guardians for individuals unable to provide consent (e.g., young children, mentally impaired individuals); assent to participate should be obtained from individuals unable to provide informed consent.
- Researchers should consult with knowledgeable others, including an IRB, when deciding whether to dispense with informed consent, such as when research is conducted in public settings. These settings require special attention to protecting individuals’ privacy.
- Privacy refers to the rights of individuals to decide how information about them is to be communicated to others.

A substantial portion of the Ethics Code dealing with research is devoted to issues related to informed consent. This is appropriate because informed consent is an essential component of the social contract between the researcher and the participant. **Informed consent** is a person’s explicitly expressed willingness to participate in a research project based on a clear understanding of the nature of the research, of the consequences for not participating, and of all factors that might be expected to influence that person’s willingness to participate (see Figure 3.3).

Researchers must make reasonable efforts to respond to any questions the participants have about the research and to respect the dignity and rights of the individual during the research experience. In this way individuals can make an informed decision about their participation. Participants’ consent must be given freely, without undue inducement or pressure. Participants should also know they are free to withdraw their consent at any time without penalty or prejudice. **Written informed consent is absolutely essential when participants are exposed to more than minimal risk.**
Research participants who consent to participate in research also have ethical responsibilities to behave in an appropriate manner. For example, participants should pay attention to instructions and perform tasks in the manner requested by the researcher. Taylor and Shepperd (1996) describe a study that illustrates the possible consequences when participants do not behave responsibly. In the study, participants were briefly left alone by an experimenter who admonished them not to discuss the experiment among themselves. Once they were alone, however, the participants talked about the experiment and obtained information from each other that in effect negated the value of the research. Moreover, when the experimenter later asked the participants about what they knew of the procedures and goals of the study, none revealed that they had gained important knowledge about the study during their illicit conversation. This example illustrates the broader principle that lying, cheating, or other fraudulent behavior by research participants violates the scientific integrity of the research situation.

True informed consent cannot be obtained from certain individuals, such as the mentally impaired or emotionally disturbed, young children, and those who have limited ability to understand the nature of research and the possible

FIGURE 3.3 The U.S. Public Health Service between 1932 and 1972 examined the course of untreated syphilis in poor African American men from Macon County, Alabama, who had not given informed consent. They were unaware they had syphilis and their disease was left untreated. Survivors were recognized by the Clinton administration.
risks (see Figure 3.4). In these cases formal informed consent must be obtained from the participants’ parents or legal guardians. Whenever possible, however, “assent,” that is, an expressed willingness to participate, should always be obtained from the participants themselves.

Online research poses particular ethical problems for obtaining informed consent. Consider that in most cases online participants typically click on their computer mouse to indicate that they have read and understood the consent statement. But does this constitute a legally binding “signature” of the research participant? How does a researcher know if participants are the required age or that they fully understood the informed consent statement? One suggestion for determining whether participants have understood the informed consent statement is to administer short quizzes about its content; procedures to distinguish children from adults might include requiring information that is generally available only to adults (Kraut et al., 2004). Whenever such ethical dilemmas arise, it is wise to seek advice from knowledgeable professionals, but the final responsibility for conducting ethical research always rests with the investigator.

It is not always easy to decide what constitutes undue inducement or pressure to participate. Paying college students $9 an hour to take part in a psychology experiment would not generally be considered improper coercion. Recruiting very poor or homeless persons from the streets with a $9 offer may be more coercive and less acceptable (Kelman, 1972). Prisoners may believe that any refusal on their part to participate in a psychology experiment will be viewed by the authorities as evidence of uncooperativeness and will therefore make it more difficult for them
to be paroled. In fact, federal guidelines (45 CFR 46.305) require investigators to inform prisoners that participation will have no effect on their parole.

When college students are asked to fulfill a class requirement by serving as participants in psychology experiments (an experience that presumably has some educational value), an alternative method of fulfilling the class requirement must be made available to those who do not wish to participate in psychological research. The time and effort required for these alternative options should be equivalent to that required for research participation. Alternative assignments frequently used include reading and summarizing journal articles describing research, making informal field observations of behavior, attending presentations of research findings by graduate students or faculty, and doing volunteer community service (see Kimmel, 1996).
IRBs require investigators to document that the proper informed consent procedure has been followed for any research involving human participants. However, it is important to recognize that, as guidelines from the federal Office for Human Research Protections state, the informed consent process should be an active process of sharing information between the investigator and the prospective subject (www.hhs/ohrp; see “FAQs Related to Informed Consent”). In Box 3.1 we provide some tips on the process of obtaining proper informed consent rather than providing a sample form that may imply “one form fits all.” Proper consent procedures and written documentation will vary somewhat across situations and populations. Members of an IRB are a good source for advice on how to obtain and document informed consent in a way that meets ethical guidelines and protects the rights of participants.

In some situations researchers are not required to obtain informed consent. The clearest example is when researchers are observing individuals’ behavior in public places without any intervention. For instance, an investigator might want to gather evidence about race relations on a college campus by observing the frequency of mixed-race versus non-mixed-race groups walking across campus. The investigator would not need to obtain students’ permission before making the observations. Informed consent would be required, however, if the identity of specific individuals was going to be recorded.

Deciding when behavior is public or private is not always clear-cut. Privacy refers to the rights of individuals to decide how information about them is to be communicated to others. Three major dimensions researchers should consider to help them decide what information is private are the sensitivity of the information, the setting, and the method of dissemination of the information (Diener & Crandall, 1978). Clearly, some kinds of information are more sensitive
The APA Ethics Code states that psychologists may dispense with informed consent when research involves naturalistic observation (see Standard 8.05). As we have just seen, however, deciding when naturalistic observation is being done in a “public” setting is not always easy. Consider the following research scenarios and decide whether you think informed consent of participants should be required before the researcher begins the research. It may be that you will want more information from the researcher. If so, what additional information would you want before deciding whether informed consent is needed in the situation? You will see that requiring informed consent can have a dramatic effect on a research situation. Requiring informed consent, for example, can make it difficult for a researcher to record behavior under “natural” conditions. Such are the dilemmas of ethical decision making.

STRETCHING EXERCISE II

The APA Ethics Code states that psychologists may dispense with informed consent when research involves naturalistic observation (see Standard 8.05). As we have just seen, however, deciding when naturalistic observation is being done in a “public” setting is not always easy. Consider the following research scenarios and decide whether you think informed consent of participants should be required before the researcher begins the research. It may be that you will want more information from the researcher. If so, what additional information would you want before deciding whether informed consent is needed in the situation? You will see that requiring informed consent can have a dramatic effect on a research situation. Requiring informed consent, for example, can make it difficult for a researcher to record behavior under “natural” conditions. Such are the dilemmas of ethical decision making.

1 In a study of drinking behavior of college students, an undergraduate working for a faculty member attends a fraternity party and records the amount drunk by other students at the party.
2 As part of a study of the gay community, a gay researcher joins a gay baseball team with the goal of recording behaviors of participants in the context of team competition during the season. All the games are played in a city recreation league with the general public as spectators.
3 Public bathroom behavior (e.g., flushing, hand washing, littering, writing graffiti) of men and women is observed by male and female researchers concealed in the stalls of the respective restrooms.
4 A graduate student wants to investigate cheating behaviors of college students. He conceals himself in a projection booth in an auditorium where exams are administered to students in very large classes. From his vantage point he can see the movements of most students with the aid of binoculars. He records head movements, switching papers, passing notes, use of cell phones, texting, and other suspicious exam-taking behaviors.
who decline to give their permission. The most difficult decisions regarding privacy involve situations in which there is an obvious ethical problem on one dimension but not on the other two, or situations in which there is a slight problem on all three dimensions. For instance, the behavior of individuals in the darkened setting of a movie theater would appear to have the potential of yielding sensitive information about the individual, but the setting could be reasonably classified as public.

Whenever possible, the manner in which participants’ information will be kept confidential should be explained to participants so that they may judge for themselves whether the safeguards taken to ensure their confidentiality are reasonable. Implementing the principle of informed consent requires that investigators seek to balance the need to investigate human behavior on the one hand with the rights of human participants on the other.

Deception in Psychological Research

- Deception in psychological research occurs when researchers withhold information or intentionally misinform participants about the research. By its nature, deception violates the ethical principle of informed consent.
- Deception is considered a necessary research strategy in some psychological research.
- Deceiving individuals in order to get them to participate in the research is always unethical.
- Researchers must carefully weigh the costs of deception against the potential benefits of the research when considering the use of deception.

One of the most controversial ethical issues related to research is the use of deception. Deception can occur either through omission, the withholding of information, or commission, intentionally misinforming participants about an aspect of the research. Some people argue that research participants should never be deceived because ethical practice requires that the relationship between experimenter and participant be open and honest (e.g., Baumrind, 1985). To some, deception is morally repugnant; it is no different from lying. Deception contradicts the principle of informed consent. Baumrind also argues that the use of deception is unwise because participants soon realize that psychologists are “tricksters” who are not to be believed when giving instructions about research participation. Moreover, deception is harmful to society because it leads people to distrust experts and be suspicious in general about all contrived events.

These views are not shared by all psychologists (see Christensen, 1988; Kimmel, 1998). Milgram (1977), for instance, suggests that deceptive practices are a kind of “technical illusion” and should be permitted in the interest of scientific inquiry. After all, illusions are sometimes created in real-life situations in order to make people believe something. Visual and sound effects are frequently used in movies, video games, and television to enhance people’s experience, and people understand these effects aren’t “real.” If special effects are a routine part of life, why can’t scientists create illusions to help them understand human behavior?
In other situations, Milgram points out, there can be a suspension of a moral principle. If we learn of a crime, we are ethically bound to report it to authorities. On the other hand, a lawyer who is given information by a client must consider that information privileged even if it reveals the client is guilty. Physicians perform very personal examinations of our bodies, which are permissible in a doctor’s office, but which would not be condoned outside the office. Milgram argues that in the interest of science, psychologists should occasionally be allowed to suspend the moral principle of truthfulness and honesty.

Despite the increased attention given to deception in research over the last several decades, the use of deception in psychological research remains a popular research strategy. For example, Skitka and Sargis (2005) surveyed social psychologists who used the Internet as a data collection tool and found that 27 percent of the reported studies involved deception of Internet participants.

How is it that deception is still widely used, despite ethical controversies? One reason is that it is impossible to carry out important research without withholding information from participants about some aspects of the research (see, e.g., Kimmel, 1998). In other situations, it is necessary to misinform participants in order to have them adopt certain attitudes or behaviors (see Box 3.2).

BOX 3.2

A SHOCKING DECEPTION

Consider the following research study:

Two people arrive at a psychology laboratory to participate in a “learning experiment.” A researcher, wearing a white lab coat, tells them the study is about the effects of punishment on learning. The two individuals draw slips of paper to determine who plays the role of “teacher” and who is the “learner.” One person, however, is a confederate (helper) of the researcher, and the drawing is rigged so that the real participant is given the role of teacher. The participant then watches as the learner is taken to an adjacent room, is strapped into a chair, and an electrode is attached to the learner’s wrist (see Figure 3.6). The researcher explains that the learner will receive an electric shock every time he makes a mistake while learning a list of word pairs.

The participant is then taken to the lab room, where there is an impressive-looking shock generator with 30 lever switches. Each switch is labeled with its voltage, ranging from 15 to 450; labels describe

FIGURE 3.6 In the 1960s, participants in Stanley Milgram’s experiments were not told that the purpose of the research was to observe people’s obedience to authority, and many followed the researcher’s instructions to give severe electric shock to another human being. For an update on this research, see Box 3.4 in this chapter.
the amount of shock, such as “Slight Shock,” “Strong Shock,” and “Danger, Severe Shock.” Two switches after the last description are simply marked XXX. The participant (teacher) is given a sample shock. The researcher instructs the teacher to administer a shock to the learner whenever he makes a mistake while learning the word pairs, and with each mistake, to move one lever higher on the shock generator.

The learner follows a script for making mistakes and responding to the shock. He first complains, then protests, and finally shouts about the painfulness of the shocks. The learner tells the researcher to end the experiment, but it continues. When the teacher gets to the switch labeled 180 volts, the learner yells, “I can’t stand it anymore,” and at 270 volts he emits an agonized scream. At 300 volts, the learner yells, “I will not give any more answers,” but proceeds to scream. After the switch corresponding to 330 volts is pressed, nothing more is heard from the learner.

What really happened: The learner was never actually shocked. The main dependent variable was the maximum value of shock the participant gave in response to the “orders” of the researcher. In more than a dozen experiments using this procedure, the majority of participants obeyed the researcher and gave the maximum shock, but the amount of shock varied depending on situational factors such as whether the participant could only hear (but not see) the learner, and whether the teacher could set the shock level (Milgram, 1974).

The purpose of this now-famous series of studies by Stanley Milgram in the 1960s was to examine “obedience to authority.” The troubling results indicated that we are capable of committing morally indefensible acts, such as administering painful shock to another person, when told to do so by an authority figure. Milgram conducted this research to try to understand what occurred in the Holocaust (Blass, 2009), when people’s obedience resulted in massive atrocities.

Milgram conducted his research before the APA Ethics Code was introduced and before federal rules required mandatory oversight of experiments on humans by Institutional Review Boards. The experiments raised ethical concerns because of the amount of deception used and the emotional distress generated in the participants (Elms, 2009). As a consequence, no studies employing Milgram’s procedures appeared for several decades. The risks seemed to outweigh the benefits.

Kassin and Kiechel (1996), for example, investigated factors affecting whether people will falsely confess to having done something they did not do. Their goal was to understand factors that lead criminal suspects to falsely confess to a crime. In their experiment, the participants’ task was to type letters that were being read aloud. They were told not to hit the Alt key while typing because this would crash the computer. The computer was rigged to crash after a brief time and the experimenter accused the participant of hitting the Alt key. Even though none of the participants had hit the Alt key, nearly 70% of the participants signed a written confession that they had done so. If their informed consent procedures had included full disclosure of this deception, it would have been impossible to study the likelihood that people would make a false confession. A careful reading of the APA Ethics Code reveals that the guideline covering deception (Standard 8.07) involves “competing values and structures the use of deception so that advancing science, avoiding harm, and respecting self-determination are all part of the ethical equation” (Behnke, 2009, p. 76; see www.apa.org/ethics).

Although deception may sometimes be justified to make it possible to investigate important research questions, deceiving participants for the purpose of
getting them to participate in research that involves more than minimal risk is always unethical. As stated in the Ethics Code, “Psychologists do not deceive prospective participants about research that is reasonably expected to cause physical pain or severe emotional distress” (Standard 8.07b).

A goal of research is to observe individuals’ normal behavior. A basic assumption underlying the use of deception is that sometimes it’s necessary to conceal the true nature of an experiment so that participants will behave as they normally would, or act according to the instructions provided by the experimenter. Problems may arise with frequent and casual use of deception. If people believe that researchers often mislead, then participants may expect to be deceived and their suspicions about the research may prevent them from behaving as they normally would (Baumrind, 1985). Those who defend the use of deception point to studies showing that participants typically do not appear to react negatively to being deceived (e.g., Burger, 2009; Christensen, 1988; Epley & Huff, 1998; Kimmel, 1996; Milgram, 1974), and although people’s suspiciousness may increase, the overall effects appear to be small (Kimmel, 1998). The bottom line, according to those who argue for the continued use of deception, is that prohibiting the use of deception in all psychological research would prevent researchers from conducting a wide range of important studies (Kimmel, 1998).

As the frequency of online research increases, it is important that researchers give particular attention to the use of deception, not only because of the potential for increasing the distrust of researchers by society’s members, but also because deception has the potential to “poison” a system (i.e., the Internet) that people use for social support and connecting with others (Skitka & Sargis, 2005).

Although many argue for the continued use of deception, it should never be used without carefully considering (1) the importance of the study to our scientific knowledge, (2) the availability of alternative, deception-free methods, and (3) the “noxiousness” of the deception (Kelman, 1972). This last consideration refers to the degree of deception involved and to the possibility of injury to the participants. In Kelman’s view: “Only if a study is very important and no alternative methods are available can anything more than the mildest form of deception be justified” (p. 997).

Debriefing

- Researchers are ethically obligated to seek ways to benefit participants even after the research is completed. One of the best ways to accomplish this goal is by providing participants with a thorough debriefing.
- Debriefing benefits both participants and researchers.
- Researchers are ethically obligated to explain to participants their use of deception as soon as is feasible.
- Debriefing informs participants about the nature of the research and their role in the study and educates them about the research process. The overriding goal of debriefing is to have individuals feel good about their participation.
- Debriefing allows researchers to learn how participants viewed the procedures, allows potential insights into the nature of the research findings, and provides ideas for future research.
Over the years, many researchers have fallen into the trap of viewing human participants in their research as “objects” from which to obtain data in order to meet their own research goals. Researchers sometimes have considered that their responsibility to participants ends when the final data are collected. A handshake or “thank you” was frequently all that marked the end of the research session. Participants likely left with unanswered questions about the research situation and with only the vaguest idea of their role in the study. It is important when planning and conducting research to consider how the experience may affect the research participants after the research is completed and to seek ways in which the participants can benefit from participation. These concerns follow directly from two of the moral principles identified in the APA Ethics Code, those of beneficence (acting for the good of the person) and respect for people’s rights and dignity.

Earlier we discussed that protecting the confidentiality of participants’ responses benefits both the participants (safeguarding them from social injury) and the researcher (e.g., by increasing the likelihood that participants will respond honestly). Similarly, debriefing participants at the end of a research session benefits both participants and the researcher (Blanck et al., 1992). When deception has been used in research, debriefing is necessary to explain to participants the need for deception, to address any misconceptions participants may have about their participation, and to remove any harmful effects resulting from the deception. Debriefing also has the important goals of educating participants about the research (rationale, method, results) and of leaving them with positive feelings about their participation. Researchers should provide opportunities for participants to learn more about their particular contribution to the research study and to feel more personally involved in the scientific process. Following a debriefing, participants in the Kassin and Kiechel (1996) experiment on false confessions reported they found the study meaningful and thought their own contribution to the research was valuable.

Debriefing provides an opportunity for participants to learn more about their specific performance in the study and about research in general. For instance, participants can learn how their individual performance in a study was influenced by situational factors, such as what the researcher asked them to do and the conditions of testing. Because the educational value of participation in psychological research is used to justify the use of large numbers of volunteers from introductory psychology classes, researchers who test college students have an important obligation to ensure that research participation is an educational experience. Classroom instructors have sometimes built on the educational foundation of the debriefing and asked their students to reflect on their research experience by writing brief reports describing details about the study’s purpose, the techniques used, and the significance of the research for understanding behavior. Students who write such reports tend to be more satisfied with their research experience and gain a greater overall benefit than students who do not write reports (Richardson, Pegalis, & Britton, 1992).

Debriefing helps researchers learn how participants viewed the procedures in the study. A researcher may want to find out whether participants perceived a particular experimental procedure in the way the investigator intended (Blanck et al., 1992). For example, a study of how people respond to failure may...
include tasks that are impossible to complete. If participants don’t judge their performance as a failure, however, the researcher’s hypothesis cannot be tested. Debriefing allows the investigator to find out whether participants judged their performance to be a failure or whether they recognized it was impossible for them to succeed.

When trying to learn participants’ perceptions of the study, researchers shouldn’t press them too hard. Research participants generally want to help with the scientific process. The participants may know that information may be withheld from them in psychological research. They may even fear they will “ruin” the research if they reveal they really did know important details about the study (e.g., the tasks really were impossible). To avoid this possible problem, debriefing should be informal and indirect. This is often best accomplished by using general questions in an open-ended format (e.g., “What do you think this study was about?” or “What did you think about your experience in this research?”). The researcher can then follow up with specific questions about the research procedures. As much as possible, these specific questions should not cue the participant about what responses are expected (Orne, 1962).

Debriefing also benefits researchers because it can identify problems in the study procedures and provide ideas for future research (Blanck et al., 1992). Debriefing can also provide clues to the reasons for participants’ performance, which may help researchers to interpret the results of the study. Finally, participants sometimes detect errors in experimental materials—for instance, missing information or ambiguous instructions—and they can report these to the researcher during the debriefing. As we said, debriefing is good for both the participant and the researcher.

Because the researcher is absent in an online research setting, an appropriate debriefing process may be difficult. The fact that online participants can easily withdraw from the study at any time is particularly troublesome in this regard (Kraut et al., 2004). One suggestion is to program the experiment in such a way that a debriefing page is presented automatically if a participant prematurely closes the window (Nosek et al., 2002). Following an Internet study, a researcher may post debriefing material at a website and even update these materials as new results come in (see Kraut et al., 2004). When a study is finally completed, researchers can e-mail a report summarizing the study’s findings to the participants so that they can better understand how the study’s goals were related to the experimental outcome. Of course, sending participants an e-mail requires the additional security of protecting their confidentiality.

Research with Animals

- Animals are used in research to gain knowledge that will benefit humans, for example, by helping to cure diseases.
- Researchers are ethically obligated to acquire, care for, use, and dispose of animals in compliance with current federal, state, and local laws and regulations, and with professional standards.
- The use of animals in research involves complex issues and is the subject of much debate.
Each year millions of animals are tested in laboratory investigations aimed at answering a wide range of important questions. New drugs are tested on animals before they are used with humans. Substances introduced into the environment are first given to animals to test their effects. Animals are exposed to diseases so that investigators may observe symptoms and test possible cures. New surgical procedures—especially those involving the brain—are often first tried on animals. Many animals are also studied in behavioral research, for example, by ethologists and experimental psychologists. For instance, animal models of the relationship between stress and diabetes have helped researchers to understand psychosomatic factors involved in diabetes (Surwit & Williams, 1996). These investigations yield much information that contributes to human welfare (Miller, 1985). In the process, however, many animals are subjected to pain and discomfort, stress and sickness, and death. Although rodents, particularly rats and mice, are the largest group of laboratory animals, researchers use a wide variety of species in their investigations, including monkeys, fish, dogs, and cats. Specific animals are frequently chosen because they provide good models for human responses. For example, psychologists interested in hearing sometimes use chinchillas as subjects because their auditory processes are similar to those of humans.

The use of animals as laboratory subjects has often been taken for granted. In fact, the biblical reference to humans’ “dominion” over all lesser creatures is sometimes invoked to justify the use of animals as laboratory subjects (Johnson, 1990). More often, however, research with animal subjects is justified by the need to gain knowledge without putting humans in jeopardy. Many questions, however, have been raised about the role of animal subjects in laboratory research (Novak, 1991; Shapiro, 1998; Ulrich, 1991). These questions include the most basic one, whether animals should ever be used in scientific investigations, as well as important questions about the care and protection of animal subjects. Clearly, according to the APA Ethics Code, the researcher who uses animal subjects in an investigation has an ethical obligation to acquire, care for, use, and dispose of animals in compliance with federal, state, and local laws and regulations, and with professional standards. Partly in response to concerns expressed by members of animal rights groups during the 1980s, investigators must satisfy many federal, state, and local requirements, including inspection of animal facilities by veterinarians from the U.S. Department of Agriculture (National Academy of Sciences, 2011). These regulations are often welcomed by members of the scientific community, and many animal researchers belong to groups that seek to protect laboratory animals. The APA has developed a list of specific guidelines to be followed when animal subjects are used in psychological research. These guidelines can be found on the website sponsored by the APA Committee on Animal Research and Ethics (CARE) at http://www.apa.org/science/leadership/care/index.aspx.

Research with animals is a highly regulated enterprise with the overriding goal of protecting the welfare of research animals. Only individuals qualified to do research and to manage and care for the particular species should be allowed to work with the animals. Animals may be subjected to pain or discomfort only when alternative procedures are not available and when the scientific,
educational, or applied goals justify the procedures. As we noted earlier, animal review boards (IACUCs) are now in place at research facilities that receive funds from the U.S. Public Health Service. These committees determine the adequacy of the procedures for controlling pain, carrying out euthanasia, housing animals, and training personnel. IACUCs also determine whether experimental designs are sufficient to gain important new information and whether the use of an animal model is appropriate or whether nonanimal models (e.g., computer simulations) could be used (Holden, 1987; see also National Academy of Sciences, 2011).

As with any ethically sensitive issue, however, compromises must be made with regard to the use of animals in research. For example, until alternatives to animal research can be found, the need to conduct research using animal subjects in order to battle human disease and suffering must be balanced against the need to protect the welfare of animals in laboratory research (Goodall, 1987). However, it is also important that the use of animal subjects not be restricted, even when the application of the research is not immediately apparent (Fowler, 1992). Some people argue that animal research has no value because the immediate application to humans isn’t always apparent. All basic research could be eliminated on this basis, which would threaten the foundation of all psychology for scientists and practitioners (Fowler, 1992).

Although most scientists agree that restrictions are necessary to prevent needless suffering in animals, most want to avoid a quagmire of bureaucratic restrictions and high costs that undermine research. Severe restrictions and high costs, as well as the negative publicity (and occasional emotional demonstrations) directed toward individuals and institutions by extremists within the animal activist groups, may deter young scientists from entering the field of animal research (Feeney, 1987). If this were to occur, the (presently) incurably ill or permanently paralyzed could possibly be deprived of hope generated by scientific research. Clearly, the many issues surrounding the debate over the relevance of animal research to the human condition are complex (see Box 3.3), and require wise and balanced discussion (Ulrich, 1992).

Reporting of Psychological Research

- Investigators attempt to communicate their research findings in peer-reviewed scientific journals, and the APA Code of Ethics provides guidelines for this process.
- Decisions about who should receive publication credit are based on the scholarly importance of the contribution.
- Ethical reporting of research requires recognizing the work of others by using proper citations and references; failure to do so may result in plagiarism.
- Proper citation includes using quotation marks when material is taken directly from a source and citing secondary sources when an original source is not consulted.

A completed research study begins its journey toward becoming part of the scientific literature when the principal investigator writes a manuscript for submission to one of the dozens of psychology-related scientific journals.
The primary goal of publishing research in a psychology journal is to communicate the results of the study to members of the scientific community and to society in general. Publishing research in journals is also a way to enhance the researcher’s reputation and even the reputation of the institution that sponsored the research. But getting the results of a scientific investigation published is not always an easy process, especially if the researcher wants to publish in one of the prestigious scientific journals. Because of the importance of publications for the science of psychology, the APA Code of Ethics provides guidelines for this process.

The ethical standards for reporting the results of a scientific investigation seem more straightforward than in the other areas of the Ethics Code we have discussed. Even here, however, ethical decisions regarding such issues as assigning credit for publication and plagiarism are not always clear-cut. Conducting a research study often involves many people. Colleagues offer suggestions about a study’s design, graduate or undergraduate students assist an investigator by testing participants and organizing data, technicians construct specialized equipment, and expert consultants give advice about statistical analyses. When preparing a manuscript for publication, should all of these individuals be considered “authors” of the study? Publication credit refers to the process of identifying as authors those individuals who have made significant contributions to the research project. Because authorship of a published scientific study frequently is
used to measure an individual’s competence and motivation in a scientific field, it is important to acknowledge fairly those who have contributed to a project.

It’s not always easy to decide whether the contribution an individual has made to a research project warrants being an “author” of a scientific paper or whether that individual’s contribution should be acknowledged in a less visible way (such as in a footnote). Also, once authorship is granted, then the order of authors’ names must be decided. “First author” of a multiple-authored article generally indicates a greater contribution than does “second author” (which is greater than third, etc.). Authorship decisions should be based mainly in terms of the scholarly importance of the contribution (e.g., aiding the conceptual aspects of a study), not by the time and energy invested in the study (see Fine & Kurdek, 1993).

Ethical concerns associated with assigning authorship can take many forms. For example, not only is it unethical for a faculty member to take credit for a student’s work, it is also unethical for students to be given undeserved author credit. This latter situation may arise, for instance, in a misguided attempt by a faculty mentor to give a student an edge when competing for a position in a competitive graduate program. According to Fine and Kurdek (1993), awarding students undeserved author credit may falsely represent the student’s expertise, give the student an unfair advantage over peers, and, perhaps, lead others to create impossible expectations for the student. These authors recommend that faculty and students collaborate in the process of determining authorship credit and discuss early in the project what level of participation warrants author credit. Due to differences in faculty–student power and position, the faculty member should initiate discussions regarding authorship credit for student contributors (see Behnke, 2003).

A rather troublesome area of concern in the reporting of research, not only for some professionals but frequently for students, is plagiarism. Again, the ethical standard seems clear enough: Don’t present substantial portions or elements of another’s work as your own. But what constitutes “substantial portions or elements,” and how does one avoid giving the impression that another’s work is one’s own? Making these decisions can be like walking a tightrope. On one side is the personal goal of being recognized for making a scholarly contribution; on the other side is the ethical obligation to recognize the previous contributions others have made. The fact that both professionals and students commit acts of plagiarism suggests that many people too often veer from the tightrope by seeking their own recognition instead of giving due credit to the work of others.

Sometimes acts of plagiarism result from sloppiness (failing to double-check a source to verify that an idea did not originate with someone else, for example). Errors of this kind are still plagiarism; ignorance is not a legitimate excuse. Mistakes can be made all too easily. For example, researchers (and students) occasionally ask “how much” of a passage can be used without putting it in quotation marks or otherwise identifying its source. A substantial element can be a single word or short phrase if that element serves to identify a key idea or concept that is the result of another’s thinking. Because there is no clear guideline for how much material constitutes a substantial element of a work, students must be particularly careful when referring to the work of others. At times, especially among
students, plagiarism can result from failure to use quotation marks around passages taken directly from a source. Whenever material is taken directly from a source, it must be placed in quotation marks and the source must be properly identified. It is also important to cite the source of material you include in your paper when you paraphrase (i.e., reword) the material. The ethical principle is that you must cite the sources of your ideas when you use the exact words and when you paraphrase. See Table 3.1 for examples of correct and incorrect citations.

Plagiarism also occurs when individuals fail to acknowledge secondary sources. A secondary source is one that discusses other (original) work. Secondary sources include textbooks and published reviews of research such as those that appear in scientific journals like the Psychological Bulletin. When your only source for an idea or findings comes from a secondary source, it is always unethical to report that information in a way that suggests you consulted the original work. It is far better to try to locate and read the original source rather than citing a secondary source. If that is not possible, you must inform the reader that you did not read the original source by using a phrase like “as cited in . . .” when referring to the original work. By citing the secondary source, you are telling the reader that you are presenting another person’s interpretation of the original material. Again, ignorance concerning the proper form of citation is not an acceptable excuse, and on unfortunate occasions researchers—professors as well as students—have seen their careers ruined by accusations of plagiarism.

STEPS FOR ETHICAL COMPLIANCE

- Ethical decision making involves reviewing the facts of the proposed research situation, identifying relevant ethical issues and guidelines, and considering multiple viewpoints and alternative methods or procedures.
- Authors who submit research manuscripts to an APA journal also must submit forms describing their compliance with ethical standards.
Should research participants be placed at risk for serious injury to gain information about human behavior? Should psychologists use deception? Is it acceptable to allow animals to suffer in the course of research? These questions, part of ethical decision making, are difficult to answer and require a thoughtful decision-making process that, in the end, may lead to answers that do not make everyone “happy.”

An ethically informed decision process should include the following steps:

1. Review the facts of the proposed research situation (e.g., participants, procedure).
2. Identify the relevant ethical issues, guidelines, and law.
3. Consider multiple viewpoints (e.g., participants, researchers, institutions, society, moral values).
4. Consider alternative methods or procedures and their consequences, including the consequences of not doing the proposed research.

Stanley Milgram’s famous series of experiments in the 1960s (described in Box 3.2) asked a straightforward question (Blass, 2009; Milgram, 1963, 1965, 1974): Under what conditions would individuals obey an authority figure who tells them to deliver painful punishment to another person?

Because of ethical concerns associated with deception and risk, no studies employing Milgram’s procedures appeared for several decades, until Professor Jerry M. Burger of Santa Clara University sought to repeat Milgram’s experiments (Burger, 2009). His question was: Would people still obey today?

In turn, the question asked of Burger was: How can you carry out Milgram’s research in an ethically acceptable manner? The answer is found in the manner in which Burger conducted his replication. To satisfy concerns of his campus IRB and to ensure the welfare of participants, Burger made the following changes:

- Screening participants carefully prior to the study.
- Explicitly telling participants they could withdraw at any time and still be paid (in fact, all participants were paid before the experiment began).
- Using a much milder “sample” shock.
- Informing participants immediately after their participation that deception had been used, explaining its purpose, and showing that the “victim” was not harmed.
- Having a clinical psychologist conduct the experiment, who was instructed to stop the study if he saw signs of excessive stress.

The most important change from Milgram’s procedure was that the procedure was stopped when participants reached 150 volts on the (fake) shock generator, rather than continuing to the 450-volt maximum used by Milgram. Burger made this ingenious deviation when he discovered that in the original experiments, four out of five participants continued to 450 once they got as far as 150.

Burger’s findings continue to be unsettling: “Obedience rates were only slightly lower than those Milgram found 45 years earlier” (Burger, 2009, Abstract, p. 1).

Importantly, Burger (2007) reported: “More than a year after collecting the data, I have no indication that any participant was harmed by his or her participation in the study. On the contrary, I was constantly surprised by the participants’ enthusiasm for the research both during debriefing and in subsequent communications” (p. 17).

Burger’s research illustrates the sometimes complex process required to find the correct balance between safeguarding the welfare of human participants and conducting research on important psychological issues (see Behnke, 2009).

BOX 3.4

DOING ETHICALLY QUESTIONABLE RESEARCH ETHICALLY

Stanley Milgram’s famous series of experiments in the 1960s (described in Box 3.2) asked a straightforward question (Blass, 2009; Milgram, 1963, 1965, 1974): Under what conditions would individuals obey an authority figure who tells them to deliver painful punishment to another person?

Because of ethical concerns associated with deception and risk, no studies employing Milgram’s procedures appeared for several decades, until Professor Jerry M. Burger of Santa Clara University sought to repeat Milgram’s experiments (Burger, 2009). His question was: Would people still obey today?

In turn, the question asked of Burger was: How can you carry out Milgram’s research in an ethically acceptable manner? The answer is found in the manner in which Burger conducted his replication. To satisfy concerns of his campus IRB and to ensure the welfare of participants, Burger made the following changes:

- Screening participants carefully prior to the study.
- Explicitly telling participants they could withdraw at any time and still be paid (in fact, all participants were paid before the experiment began).
- Using a much milder “sample” shock.
- Informing participants immediately after their participation that deception had been used, explaining its purpose, and showing that the “victim” was not harmed.
- Having a clinical psychologist conduct the experiment, who was instructed to stop the study if he saw signs of excessive stress.

The most important change from Milgram’s procedure was that the procedure was stopped when participants reached 150 volts on the (fake) shock generator, rather than continuing to the 450-volt maximum used by Milgram. Burger made this ingenious deviation when he discovered that in the original experiments, four out of five participants continued to 450 once they got as far as 150.

Burger’s findings continue to be unsettling: “Obedience rates were only slightly lower than those Milgram found 45 years earlier” (Burger, 2009, Abstract, p. 1).

Importantly, Burger (2007) reported: “More than a year after collecting the data, I have no indication that any participant was harmed by his or her participation in the study. On the contrary, I was constantly surprised by the participants’ enthusiasm for the research both during debriefing and in subsequent communications” (p. 17).

Burger’s research illustrates the sometimes complex process required to find the correct balance between safeguarding the welfare of human participants and conducting research on important psychological issues (see Behnke, 2009).
CHAPTER 3: Ethical Issues in the Conduct of Psychological Research

With careful consideration of these factors, a “correct” decision to proceed with the proposed research is based on a diligent review of the research and ethical issues, and not simply on what might make the researcher or other individuals “happy.” Box 3.4 describes this process for recent research using Milgram’s obedience procedures.

Authors of manuscripts submitted to an APA journal must submit forms stating their compliance with ethical standards (see Publication Manual of the American Psychological Association, APA, 2010b). These forms can be found in the Publication Manual (pp. 233–235), as well as on the APA journal Web page (http://www.apa.org/pubs/journals). Of course, a consideration of ethical issues should be made before initiating a research project, during the research process itself as problems arise (e.g., participants’ unanticipated reactions), and in preparation for discussion with editors and reviewers when the manuscript is submitted for publication in a journal. To help ensure ethical compliance throughout the research process, APA has published an Ethical Compliance Checklist (see Publication Manual, p. 20). The Checklist covers many of the ethical issues discussed in this chapter, including institutional review, informed consent, treatment of animal subjects (if applicable), proper citation of other published work, and order of authorship. Remember: Careful review of these issues and others described in the APA compliance forms should be made prior to beginning your research.

Summary

Psychological research raises many ethical questions. Thus, before beginning a research project, you must consider both the specific ethical issues from the APA Ethics Code and the laws and regulations that are relevant to your project. In most cases formal institutional approval—for example, from an IRB or IACUC—must be obtained before beginning to do research. One function of an IRB is to reach a consensus regarding the risk/benefit ratio of the proposed research. Risk can involve physical, psychological, or social injury. Informed consent must be obtained from human participants in most psychological research. Researchers must take special safeguards to protect human participants when more than minimal risk is present and to provide appropriate debriefing following their participation. Serious ethical questions arise when researchers withhold information from participants or misinform them about the nature of the research. When deception is used, debriefing should inform participants about the reasons for having used deception. Debriefing can also help participants feel more fully involved in the research situation as well as help the researcher learn how the participants perceived the treatment or task. Online research presents new ethical dilemmas for a researcher, and consultation with IRB members, as well as researchers experienced with Internet data collection, is urged prior to planning such a study.

Psychologists who test animal subjects must obey a variety of federal and state guidelines and, in general, must protect the welfare of the animals. Animals may be subjected to pain or discomfort only when alternative procedures are not available and when the goals of the research are judged to justify such procedures in terms of the scientific, educational, or applied value of the research.
Until alternatives to animal research can be found, many people accept the compromise of conducting research using animal subjects to battle disease and suffering while protecting the welfare of animals in laboratory research.

Reporting of psychological findings should be done in a manner that gives appropriate credit to the individuals who contributed to the project. When previously published work contributes to an investigator’s thinking about a research study, the investigator must acknowledge this contribution by properly citing the individuals who reported the previous work. Failure to do so represents a serious ethical problem: plagiarism. Ethical decision making involves reviewing the facts of the proposed research situation, identifying relevant ethical issues and guidelines, and considering multiple viewpoints and alternative methods or procedures. Authors who submit research manuscripts to an APA journal also must submit forms describing their compliance with ethical standards.

KEY CONCEPTS

- **risk/benefit ratio** 62
- **minimal risk** 65
- **informed consent** 67
- **privacy** 71
- **deception** 73
- **debriefing** 77
- **plagiarism** 82

REVIEW QUESTIONS

1. Explain why researchers submit research proposals to Institutional Review Boards (IRBs) or Institutional Animal Care and Use Committees (IACUCs) before beginning a research project, and briefly describe the functions of these committees in the research process.
2. Explain how the risk/benefit ratio is used in making ethical decisions. What factors contribute to judging the potential benefits of a research project?
3. Explain why research cannot be risk free and describe the standard that researchers use to determine whether research participants are “at risk.” Describe briefly how characteristics of the participants in the research can affect the assessment of risk.
4. Differentiate among the three possible types of risk that can be present in psychological research: physical, psychological, social. How do researchers typically safeguard against the possibility of social risk?
5. What are three important ethical issues raised by online research?
6. What information does the researcher have an ethical obligation to make clear to the participant in order to ensure the participant’s informed consent? Under what conditions does the APA Ethics Code indicate that informed consent may not be necessary?
7. What three dimensions should researchers consider when they attempt to decide whether information is public or private?
8. Explain why deception may sometimes be necessary in psychological research. Describe briefly the questions researchers should ask before using deception, and describe the conditions under which it is always unethical to deceive participants.
9. In what ways can debriefing benefit the participant? In what ways can debriefing benefit the researcher?
10. What ethical obligations are specified in the APA Ethics Code for researchers who use animals in their research?
What conditions are required by the APA Ethics Code before animals may be subjected to stress or pain?

Explain how researchers decide when an individual can be credited as an author of a published scientific report.

Describe the procedures an author must follow to avoid plagiarism when citing information from an original source or from a secondary source.

Identify the steps in an ethically informed decision process regarding whether a proposed research project should be conducted.

What must authors include when submitting a research manuscript to an APA journal?

CHALLENGE QUESTIONS

Note: Unlike in other chapters, no answers to the Challenge Questions or Stretching Exercises are provided in this chapter. To resolve ethical dilemmas, you must be able to apply the appropriate ethical standards and to reach an agreement regarding the proposed research after discussion with others whose backgrounds and knowledge differ from your own. You will therefore have to consider points of view different from your own. We urge you to approach these problems as part of a group discussion of these important issues.

The first two challenge questions for this chapter include a hypothetical research proposal involving a rationale and method similar to that of actual published research. To answer these questions, you will need to be familiar with the APA ethical principles and other material on ethical decision making presented in this chapter, including the recommended steps for decision making that were outlined at the end of this chapter. As you will see, your task is to decide whether specific ethical standards have been violated and to make recommendations regarding the proposed research, including the most basic recommendation of whether the investigator should be allowed to proceed.

1 IRB Proposal

Instructions Assume you are a member of an Institutional Review Board (IRB). Besides yourself, the committee includes a clinical psychologist, a social psychologist, a social worker, a philosopher, a Protestant minister, a history professor, and a respected business executive in the community. The following is a summary of a research proposal that has been submitted to the IRB for review. You are asked to consider what questions you might want to ask the investigator and whether you would approve carrying out the study at your institution in its present form, whether modification should be made before approval, or whether the proposal should not be approved. (An actual research proposal submitted to an IRB would include more details than we present here.)

Rationale College students (women more than men) spend many hours each week on social networking sites, especially Facebook. The present study will investigate predictors of online behavior using the Big Five personality test, which identifies five personality traits: openness to experience, conscientiousness, extraversion, agreeableness, and neuroticism (emotional stability). This well-known Five-Factor model of personality has been used to predict numerous outcomes, including job performance, psychological well-being, and academic achievement. Recently, the five traits have been used to predict social media use, including number of Facebook contacts and type of Twitter user.

One variation of the Big Five test asks individuals to use a 5-point scale to indicate the extent to which they agree with many different statements about themselves. Sample items associated with the five dimensions are:

- I have a vivid imagination. (Openness)
- I follow a schedule. (Conscientiousness)
- I am the life of the party. (Extraversion)
- I am interested in people. (Agreeableness)
- I get irritated easily. (Neuroticism)

The present study investigates whether the Big Five personality traits can be validly assessed by monitoring the Facebook pages of college students.
Specifically, two graduate-student judges will use information from an individual's Facebook page (e.g., Profile, Timeline, Likes) to rate each user's personality.

Method Participants will be students enrolled in a large introductory psychology class taught by the principal investigator. Students in the class who use Facebook will be asked to “friend” the instructor so that her teaching assistants can communicate with them (e.g., answer questions, provide messages related to the course, give feedback, announce course-related events). Using a Facebook account set up for this purpose by the instructor, two graduate students will monitor the Facebook pages of students in the class. Monitoring will involve twice-weekly “visits” to the student’s Facebook page over an 8-week period. On each visit, the graduate-student judges will use whatever information is available to rate the students on the Big Five dimensions. Ratings will be adjusted as new information becomes available throughout the 8-week period.

Near the end of the semester students in the psychology class will be asked to take a paper-and-pencil version of the Big Five personality test in class as part of a class discussion on the psychology of personality. Students will be asked to put their names on the test so that the instructor can provide them with the results of the test, which they can interpret based on class discussion of the Big Five traits.

Results from the in-class personality test will be compared with results obtained by the graduate-student judges using information from students’ Facebook pages. Data analysis will examine which traits, if any, can be validly assessed using information found on Facebook, and whether both sets of personality ratings predict students’ grades in the class. A positive correlation between the students’ test results and the judges’ ratings would suggest that information found on Facebook pages may provide important ways to assess personality. If so, additional analyses can be conducted to examine the relationship between personality traits and use of social media.

2 IACUC Proposal

Instructions Assume you are a member of an Institutional Animal Care and Use Committee (IACUC). Besides yourself, the committee includes a veterinarian, a biologist, a philosopher, and a respected business executive in the community. The following is a summary of a research proposal that has been submitted to the IACUC for review.

You are asked to consider what questions you might want to ask the investigator and whether you would approve carrying out this study at your institution in its present form, whether modification should be made before approval, or whether the proposal should not be approved. (An actual research proposal submitted to an IACUC would include more details than we present here.)

Rationale The researchers seek to investigate the role of subcortical structures in the limbic system in moderating emotion and aggression. This proposal is based on previous research from this laboratory which has shown a significant relationship between damage in various subcortical brain areas of monkey subjects and changes in eating, aggression, and other social behaviors (e.g., courtship). The areas under investigation are those that sometimes have been excised in psychosurgery with humans when attempting to control hyperaggressive and assaultive behaviors. Moreover, the particular subcortical area that is the focus of the present proposal has been hypothesized to be involved in controlling certain sexual activities that are sometimes the subject of psychological treatment (e.g., hypersexuality). Previous studies have been unable to pinpoint the exact areas thought to be involved in controlling these behaviors; the proposed research seeks to improve on this knowledge.

Method Two groups of rhesus monkeys will be the subjects. One group (N = 4) will be a control group. These animals will undergo a sham operation, which involves anesthetizing them and drilling a hole in the skull. These animals then will be tested and evaluated in the same manner as the experimental animals. The experimental group (N = 4) will undergo an operation to lesion a small part of a subcortical structure known as the amygdala. Two of the animals will have lesions in one site; the remaining two will receive lesions in another site of this structure. After recovery, all animals will be tested on a variety of tasks measuring their food preferences, social behaviors with same-sex and opposite-sex monkeys, and emotional responsiveness (e.g., reactions to a novel fear stimulus: an experimenter in a clown face). The animals will be housed in a modern animal laboratory; the operations will be performed and recovery monitored by a licensed veterinarian. After testing, the experimental animals will be sacrificed and the brains prepared for histological examination. (Histology is necessary to confirm the
locus and extent of lesions.) The control animals will not be killed; they will be returned to the colony for use in future experiments.

3 In this chapter you learned that Milgram’s well-known research study (see Box 3.2) was recently replicated, but conducted under conditions imposed to better safeguard the welfare of the participants (Burger, 2009). Please review the restrictions that were placed on Milgram’s original procedure (see Box 3.4) before answering the following questions.

A Do you believe deception was ethically justified in Milgram’s original experiment? What about Burger’s replication?

B Do you believe deception should be permitted in psychological research? Why or why not?

4 Consider the following variation of a scenario presented by Fine and Kurdek (1993) as part of their discussion of the issue of determining authorship of a publication.

An undergraduate student asked a psychology faculty member to supervise an honors thesis. The student proposed a topic, the faculty member and the student jointly developed the research methodology, the student collected and entered the data, and with help from the faculty member conducted the statistical analyses. The student wrote the thesis under very close supervision by the faculty member. After the honors thesis was completed, the faculty member decided that data from the project were sufficiently interesting to warrant publication. Because the student did not have the skills necessary to write up the study for a scientific journal, the faculty member did so.

A Identify the factors in the situation you would consider to determine whether the student should be an author of any publication resulting from this work, or whether the student’s work should be acknowledged in a footnote to the article.

B If you decide that the student should be an author, explain whether you think the student should be the first author or the second author of the article.
This page intentionally left blank
PART TWO

Descriptive Methods
CHAPTER FOUR

Observation

CHAPTER OUTLINE

OVERVIEW

SAMPLING BEHAVIOR
Time Sampling
Situation Sampling

OBSERVATIONAL METHODS

DIRECT OBSERVATIONAL METHODS
Observation without Intervention
Observation with Intervention

INDIRECT (UNOBTURSIVE) OBSERVATIONAL METHODS
Physical Traces
Archival Records

RECORDING BEHAVIOR

Comprehensive Records of Behavior
Selected Records of Behavior

ANALYSIS OF OBSERVATIONAL DATA

Qualitative Data Analysis
Quantitative Data Analysis

THINKING CRITICALLY ABOUT OBSERVATIONAL RESEARCH

Influence of the Observer
Observer Bias

SUMMARY
We observe behavior every day. Admit it. Many of us are people watchers. And it isn’t simply because we are dedicated voyeurs or even exceptionally curious, although human behavior is certainly often interesting. People’s behaviors—gestures, expressions, postures, choice of apparel—contain a lot of information as popular books on “body language” emphasize (e.g., Pease & Pease, 2006). The “stuff” we own and display for others to see (e.g., posters on bedroom walls, books and trinkets on a shelf, music we listen to, sports-related décor) provides clues to our personality and interests that are used by observers (sometimes unconsciously) to make judgments about us (Gosling, 2009). Whether it is a simple smile or a subtle courtship ritual, another person’s behavior frequently provides cues that are quickly recognized. Indeed, research reveals that many of our expressions are “universal” signals, that is, recognized in all cultures (e.g., Ekman, 1994). Scientists, too, rely on their observations to learn a lot about behavior (although see Baumeister, Vohs, & Funder, 2007, for an opinion that psychologists don’t observe actual behavior enough).

Our everyday observations and those of scientists differ in many ways. When we observe casually, we may not be aware of factors that bias our observations. Moreover, we rarely keep formal records of our observations. Instead, we rely on our memory of the events even though our own experience (and psychological research) confirms that our memory is not perfect!

Scientific observation is made under precisely defined conditions, in a systematic and objective manner, and with careful record keeping. The primary goal of observational methods is to describe behavior. Scientists strive to describe behavior fully and as accurately as possible, but face serious challenges in reaching this goal. It is impossible for researchers to observe all of a person’s behavior. Consequently, scientists rely on observing samples of people’s behavior. Behavior, however, frequently changes depending on the situation or context in which the behavior occurs. Consider your own behavior. Do you behave the same at home as in school, or at a party compared to in a classroom? Does your observation of others, such as your friends, lead you to conclude that context is important? Have you observed that children sometimes change their behavior when they are with one or the other of their parents? Useful descriptions of behavior require that observations be made across many different situations and at different times.

In this chapter you will see that the scientist-observer is not always passively recording behavior as it occurs. We will take a look at reasons why scientists intervene to create special situations for their observations. We’ll also look at ways to investigate behavior indirectly. By examining physical traces (e.g., graffiti, textbook underlining) and archival records (e.g., marriage licenses, high school yearbooks), scientists gain important insights into behavior. We also introduce you to methods for recording and for analyzing observational data, as well as describe important challenges that can make it difficult to interpret the results of observational studies. Observation provides a rich source of hypotheses about behavior, and so observation can also be a first step in discovering why organisms behave as they do.
Sampling Behavior

- When a complete record of behavior cannot be obtained, researchers seek to obtain a representative sample of behavior.
- The extent to which observations may be generalized (external validity) depends on how behavior is sampled.

Before conducting an observational study, researchers must make a number of important decisions about when and where observations will be made. Typically only certain behaviors occurring at particular times, in specific settings, and under particular conditions can be observed. In other words, behavior must be sampled. This sample is used to represent the larger population of all possible behaviors. By choosing times, settings, and conditions for their observations that are representative of a population of behaviors, researchers can generalize their findings to that population. Results can be generalized only to participants, times, settings, and conditions similar to those in the study in which the observations were made. The key feature of representative samples is that they are “like” the larger population from which they are drawn. For example, observations made of classroom behavior at the beginning of a school year may be representative of behavior early in the school year, but may not yield results that are typical of behavior seen at the end of the school year.

External validity refers to the extent to which the results of a research study can be generalized to different populations, settings, and conditions. Recall that validity concerns “truthfulness.” When we seek to establish the external validity of a study, we examine the extent to which a study’s findings may be used accurately to describe subjects, settings, and conditions beyond those used in the study. In this section we describe how time, event, and situation sampling are used to enhance the external validity of observational findings.

Time Sampling

- Time sampling refers to researchers choosing time intervals for making observations either systematically or randomly.
- When researchers are interested in events that happen infrequently, they rely on event sampling to sample behavior.

Researchers typically use a combination of time sampling and situation sampling to identify representative samples of behavior. In time sampling, researchers seek representative samples by choosing various time intervals for their observations. Intervals may be selected systematically (e.g., observing the first day of each week), randomly, or both. Consider how time sampling could be used to observe children’s classroom behavior. If the researchers restricted their observations to certain times of the day (say, mornings only), they would not be able to generalize their findings to the rest of the school day. One approach to obtaining a representative sample is to schedule observation periods systematically throughout the school day. Observations might be made during four 30-minute periods beginning at 8:30, 10:30, 12:30, and 2:30. A random time-sampling technique could be used in the same situation by distributing four 30-minute periods randomly over the course of the day. A different random
schedule would be determined for each day observations are made. Times would vary from day to day, but, over the long run, behavior would be sampled equally from all times of the school day.

The last couple decades have seen an increase in the use of electronic devices for sampling behavior. For instance, electronic pagers can be programmed to signal observers on a random time schedule (normal sleeping times are excluded). In one study of middle-class youth, researchers obtained self-reports of their own behavior, which can be affected by subjective interpretations and lack of awareness about their behavior (Mehl & Pennebaker, 2003). Researchers have used the EAR to:

- Relate people’s conversational styles to paper-and-pencil measures of personality and self-reported happiness (Mehl, Vazire, Holleran, & Clark, 2010).
- Answer the question: “Are women really more talkative than men?” (Mehl, et al., 2007).
- Investigate the stability of college students’ “social worlds” (Mehl & Pennebaker, 2003).

EAR may also provide a useful strategy for assessing psychological well-being and physical health in people’s natural environment. Audio recordings of health-related language (e.g., expressions of emotions) and behaviors can supplement more traditional health assessments (Mehl, Robbins, & Deters, 2012). The EAR provides researchers a unique opportunity to observe with their ears important aspects of natural behavior. The methodology incorporates both time and situation sampling, which strengthens the external validity of results.

Another interesting methodology makes use of the EAR (acronym for an “electronically activated recording” device), which provides an acoustic log of a person’s daily activities (see Box 4.1). Participants wear a small audio recorder programmed to record sounds in the individual’s environment for 30 seconds at 12.5-minute intervals. Judges listen to the recordings and at the end of each interval, code the social environment according to the nature of the participant’s location (e.g., apartment, restaurant), activity (e.g., listening to music, working on a computer), interaction (e.g., alone, talking to others), and mood (e.g., laughing, crying). In addition, transcriptions of language captured by EAR are submitted to computer-aided linguistic analysis (see Mehl & Holleran, 2007).

Systematic and random time-sampling procedures are often combined, as when observation intervals are scheduled systematically but observations within an interval are made at random times. For example, electronic pagers...
might be programmed to signal every 3 hours (systematic), but at a randomly
selected time during each 3-hour interval. Whatever time-sampling procedure
is used, the goal of time sampling is to obtain a sample of behavior that will
represent an organism’s usual behavior.

Time sampling is not an effective method for sampling behavior when the
event of interest occurs infrequently. Researchers who use time sampling for in-
frequent events may miss the event entirely. Or, if the event lasts a long time, time
sampling may lead the researcher to miss an important portion of the event, such
as its beginning or end. In event sampling the observer records each event that
meets a predetermined definition. For example, researchers interested in observ-
ing an animal’s behavior while eating would use event sampling. Sport psychol-
ologists may record only some behaviors at specific athletic games (e.g., Bowker
et al., 2009). The particular event defines when the observations are to be made.

Event sampling also is useful for observing behavior during events that
occur unpredictably, such as natural or other disasters. Whenever possible, ob-
servers try to be present at those times when an event of interest occurs or is
likely to occur. Although event sampling is an effective and efficient method
for observing infrequent or unpredictable events, the use of event sampling can
easily introduce biases into the record of behavior. For instance, event sampling
could lead an observer to sample at the times that are most “convenient” or
only when an event is certain to occur. The resulting sample of behavior at these
times may not be representative of the same behavior at other times. There is yet
another sampling procedure that also may be used to obtain a representative
sample: situation sampling.

Situation Sampling

- Situation sampling involves studying behavior in different locations and
 under different circumstances and conditions.
- Situation sampling enhances the external validity of findings.
- Within situations, subject sampling may be used to observe only some
 individuals in the setting.

Researchers can significantly increase the external validity of observational
findings by using situation sampling. Situation sampling involves observing
behavior in as many different locations and under as many different circum-
stances and conditions as possible. By sampling various situations, researchers
reduce the chance that their results will be unique to specific circumstances or
conditions. For example, animals do not behave the same way in zoos as they
do in the wild or, it seems, in different locales. This is seen in studies of mutual
eye gaze between mother and infant chimpanzees. Mutual eye gaze occurs in
chimps as it does in humans, but in one study of chimpanzees the frequency
of this behavior differed between animals observed in the United States and in
Japan (Bard et al., 2005). Similarly, eye gaze between humans is known to vary
across cultures (e.g., McCarthy, Lee, Itakura, & Muir, 2006).

There are many situations where there may be more behavior going on than
can be effectively observed. For example, if researchers observed students’
food selections in the dining hall during peak hours, they would not be able to
observe all the students. In this case, and in others like it, the researcher would use *subject sampling* to determine which students to observe. Similar to the procedures for time sampling, the researcher could either select students systematically (e.g., every 10th student) or select students randomly. In what is likely by now a familiar refrain, the goal of subject sampling is to obtain a representative sample, in this example, of all students eating in the dining hall.

Observational Methods

- Observational methods can be classified as direct observation or indirect observation.

Researchers often observe behavior while it occurs—that is, through *direct observation*. However, observations also can be made indirectly, as when researchers examine evidence of past behavior using physical traces or archival records. This is *indirect* (or unobtrusive) observation. Figure 4.1 illustrates the organization of observational methods. First we will discuss direct observational methods and then indirect (unobtrusive) methods.

Direct Observational Methods

- Direct observational methods can be classified as “observation without intervention” or “observation with intervention.”

When observing behavior directly, researchers make a decision regarding the extent to which they will intervene in the situation they observe. In this case, intervention refers to researchers’ efforts to change or create the context for observation. The extent of intervention varies on a continuum from none (observation without intervention) to intervention that involves carrying out an experiment in a natural setting.

FIGURE 4.1 Flow diagram of observational methods.
Psychologists are not the only researchers who observe behavior in natural settings. Observation is a fundamental method in ethology, a branch of biology (Eibl-Eibesfeldt, 1975). Ethologists study the behavior of organisms in relation to their natural environment, typically logging countless hours of observation of animals in their natural settings. Speculations about the role of innate mechanisms in determining human behavior are not uncommon among ethologists.

Researchers who study mating and procreation among animals have been struggling to interpret evidence indicating sexual and parenting behaviors among same-sex animals (Mooallem, 2010). Although most biologists avoid comparisons to human sexuality, the observations of same-sex behavior and co-parenting among animals has led to a great deal of controversy (see Figure 4.2). People on both sides of the socio-political debate regarding homosexuality have used evidence of same-sex behavior among animals to further their own agendas. A hallmark of scientific observation, however, is that it is objective and free from bias—including political agendas. Yet, many would wish to interpret animal sexuality using human terms, such as homosexuality or lesbianism, rather than to interpret the animal’s behavior in its own context, with its own purpose.

The problem in understanding same-sex behaviors lies at the heart of evolutionary biology, namely, that all evolutionary-adaptive behavior is guided by a central goal: passing on genes. Nevertheless, biologists recently have developed theories suggesting that sexual and parenting behaviors among same-sex animals may be by-products of adaptation. This process of objective observation and theory construction forms the basis for all science. Yet, science, as we noted in Chapter 1, takes place in a cultural context that can lead some people to be less than objective when interpreting the results of this process.

FIGURE 4.2 The children’s book *And Tango Makes Three* (Richardson & Parnell, 2005) is based on the story of two male penguins that were observed fostering a penguin chick at Central Park Zoo. The American Library Association reports that this was the most frequently banned book in 2009.
Observation without Intervention

- The goals of naturalistic observation are to describe behavior as it normally occurs and to examine relationships among variables.
- Naturalistic observation helps to establish the external validity of laboratory findings.
- When ethical and moral considerations prevent experimental control, naturalistic observation is an important research strategy.
- Online behavior can be observed without intervention.

Direct observation of behavior in a natural setting without any attempt by the observer to intervene is frequently called naturalistic observation. An observer using this method of observation acts as a passive recorder of events as they occur naturally. We can consider a natural setting one in which behavior ordinarily occurs and that has not been arranged specifically for the purpose of observing behavior, as in a psychology lab. For example, Matsumoto and Willingham (2006) observed athletes in the “natural” (for these athletes) setting of an Olympic judo competition. Box 4.2 describes recent findings based on naturalistic observation within the field of ethology.

Observation in natural settings often serves, among other functions, as a way to establish the external validity of laboratory findings—bringing the lab into the “real world.” For example, findings from questionnaires and interviews reveal that parental depression is linked to negative child outcomes. To explore how this relationship plays out in children’s daily lives, researchers used naturalistic observation of 35 preschoolers (Slatcher & Trentacosta, 2012). They employed a child version of the EAR (see Box 4.1) to track behavior and language during two 1-day periods, a year apart. Results revealed that greater parental depressive symptoms (based on questionnaire data) were associated with increased problem behavior among children (e.g., crying, angry behavior).

The major goals of observation in natural settings are to describe behavior as it ordinarily occurs and to investigate the relationship among variables that are present. Developmental psychologists have used the natural settings of schoolrooms and playgrounds to investigate the frequency and types of childhood aggression, including bullying behavior (e.g., Crick et al., 2006; Drabick & Baugh, 2010; Hartup, 1974; Hawkins & Pepler, 2001; Ostrov & Keating, 2004). Of particular interest are the frequency and type of peer-directed aggression. In one study, researchers observed 91 preschoolers over an 18-month period, recording physical and relational aggression during the children’s free play (Crick et al., 2006). While physical aggression refers to physical harm to another, or threats of such harm, relational aggression refers to actual or threatened damage to relationships (e.g., social exclusion, the “silent treatment,” threats to end a relationship). Each boy and girl was observed for a total of 80 minutes over four different 8-week periods, or a total of 320 minutes. As might be expected, aggression was primarily directed at same-sex peers, with girls more relationally aggressive than boys, and boys more physically aggressive than girls. Importantly, relational aggression remained moderately stable over the course of the study and predicted future peer rejection problems. The researchers argue that observational methods can provide a more objective
measurement of social behavior than other forms of assessment (e.g., peer or teacher reports).

The study of children’s aggression illustrates why a researcher may choose to use naturalistic observation rather than to manipulate experimental conditions to study behavior. There are certain aspects of human behavior that moral or ethical considerations prevent us from controlling. For example, researchers are interested in the relationship between early childhood isolation and later emotional and psychological development. However, we would object strenuously if they tried to take children from their parents in order to raise them in isolation. Alternative methods of data collection must be considered if childhood isolation is to be investigated. For example, the effect of early isolation on later development has been studied through experimentation on animal subjects (Harlow & Harlow, 1966); observations of so-called feral children raised outside of human culture, presumably by animals (Candland, 1993); case studies of children subjected to unusual conditions of isolation by their parents (Curtiss, 1977); and systematic, direct observation of institutionalized children (Spitz, 1965). Moral and ethical sanctions also apply to investigating the nature of children’s aggression. We would not want to see children intentionally harassed and picked on simply to record their reactions. However, as anyone who has observed children knows, there is plenty of naturally occurring aggression. Naturalistic observation can be a useful method of gaining knowledge about children’s aggression within moral and ethical constraints.

Researchers also turn to the Internet for naturalistic observation. Internet communities, such as chat rooms, newsgroups, and multiplayer real-time games (e.g., MUDs or MMORGs) are natural settings for the study of various behaviors (e.g., Whitlock, Powers, & Eckenrode, 2006). These settings appear to be especially suited for qualitative analysis (see Chapter 2, as well as the discussion of qualitative analysis later in this chapter). Passive observation in a teen chat room, for example, was used to “explore how issues of sexuality and identity are constructed” (Subrahmanyam, Greenfield, & Tynes, 2004, p. 651). Such studies must be approached only after careful consideration is given to potential harm to participants when confidentiality is not protected or when detecting an observer’s presence will damage the community. Of particular importance is whether the venue is perceived by users as “public” or “private” (see Eysenbach & Till, 2001).

Observation with Intervention

- Most psychological research uses observation with intervention.
- The three methods of observation with intervention are participant observation, structured observation, and the field experiment.
- Whether “undisguised” or “disguised,” participant observation allows researchers to observe behaviors and situations that are not usually open to scientific observation.
- If individuals change their behavior when they know they are being observed (“reactivity”), their behavior may no longer be representative of their normal behavior.
• Often used by clinical and developmental psychologists, structured observations are set up to record behaviors that may be difficult to observe using naturalistic observation.

• In a field experiment, researchers manipulate one or more independent variables in a natural setting to determine the effect on behavior.

It’s not a secret. Scientists like to “tamper” with nature. They like to intervene in order to observe the effects and perhaps to test a theory. Intervention, rather than nonintervention, characterizes most psychological research. There are three important methods of observation that researchers use when they choose to intervene in natural settings: participant observation, structured observation, and the field experiment. The nature and degree of intervention varies across these three methods. We will consider each method in turn.

Participant Observation In participant observation, observers play a dual role: They observe people’s behavior and they participate actively in the situation they are observing. In undisguised participant observation, individuals who are being observed know that the observer is present for the purpose of collecting information about their behavior. This method is used frequently by anthropologists who seek to understand the culture and behavior of groups by living and working with members of the group.

In disguised participant observation, those who are being observed do not know they are being observed. As you might imagine, people do not always behave in the way they ordinarily would when they know their behavior is being recorded. As we’ll discuss later in this chapter, a major problem when observing behavior is reactivity. Reactivity occurs when people react to the fact they are being observed by changing their normal behavior. Therefore, researchers may decide to disguise their role as observers if they believe that people being observed will change their behavior once they know their activities are being recorded. Disguised participant observation raises ethical issues (e.g., privacy and informed consent) that must be addressed prior to implementing the study. We have considered these ethical issues in Chapter 3 and will discuss them further later in this chapter.

Participant observation allows an observer to gain access to a situation that is not usually open to scientific observation. In a classic study of psychiatric diagnosis and hospitalization of the mentally ill, Rosenhan (1973) employed disguised participant observers who sought admission to mental hospitals. Each complained of the same general symptom: that he or she was hearing voices. Most of the pseudopatients were diagnosed with schizophrenia. Immediately after being hospitalized, the participant observers stopped complaining of any symptoms and waited to see how long it took for a “sane” person to be released from the hospital. Once hospitalized, they recorded their observations. The researchers were hospitalized from 7 to 52 days, and when discharged, their schizophrenia was said to be “in remission.” Apparently, once the pseudopatients were labeled schizophrenic, they were stuck with that label.

There are, however, reasons to challenge this specific conclusion and other aspects of Rosenhan’s (1973) study (e.g., Spitzer, 1976; Weiner, 1975). For
example, psychiatrists pointed to the fact that “in remission” may simply mean that the individual is no longer experiencing symptoms, and because persons with schizophrenia are expected to experience symptoms again, a diagnosis of “in remission” guides mental health professionals as they try to understand a person’s behavior. Nevertheless, Rosenhan’s study has led mental health professionals to look more closely at how they form a diagnosis, including the role played by theoretical and personal biases.

Because disguised participant observers have similar experiences as the people under study, they gain important insights and understanding of individuals or groups. The pseudopatients in the Rosenhan study, for instance, felt what it was like to be labeled schizophrenic and not to know how long it would be before they could return to society. An important contribution of Rosenhan’s (1973) study was its illustration of the dehumanization that can occur in institutional settings.

A participant observer’s role in a situation can pose serious problems in carrying out a successful study. Observers may, for instance, lose their scientific objectivity if they identify too closely with the people and situation they are observing. For example, a criminologist went through police academy training as an undisguised participant observer and became a uniformed patrol officer assigned to a high-crime area (Kirkham, 1975). His experiences as an officer led to unexpected and dramatic changes in his attitudes, personality, mood, and behavior. As the researcher noted, he displayed “punitiveness, pervasive cynicism and mistrust of others, chronic irritability and free-floating hostility, racism, [and] a diffuse personal anxiety over the menace of crime and criminals” (p. 19). In situations such as these, participant observers must be aware of the threat to objective reporting due to their involvement in the situation, particularly as their involvement increases.

Another potential problem with participant observation is that the observer can influence the behavior of people being studied. It is likely that the participant observer will have to interact with people, make decisions, initiate activities, assume responsibilities, and otherwise act like everyone else in that situation. By participating in the situation, do observers change the participants and events? If people do not act as they normally would because of the participant observer, it is difficult to generalize results to other situations.

The extent of a participant observer’s influence on the behavior under observation is not easily assessed. Several factors must be considered, such as whether participation is disguised or undisguised, the size of the group entered, and the role of the observer in the group. When the group under observation is small or the activities of the participant observer are prominent, the observer is more likely to have a significant effect on people’s behavior. Thus, although participant observation may permit an observer to gain access to situations not usually open to scientific investigation, the observer using this technique must seek ways to deal with the possible loss of objectivity and the potential effects an observer may have on the behavior under study.

Participant observation has been used to gain entry into various Internet communities that are not typically open to outsiders. For example, a researcher
performed an analysis of hate crimes against African Americans by entering various “White racist Internet chat rooms” while posing as a “curious neophyte” (Glaser, Dixit, & Green, 2002). In another instance, an investigator examined the kind of psychological support offered by the “pro-ana” online community by joining pro-ana sites as a disguised participant observer (Brotsky & Giles, 2007). (“Pro-ana” refers to the promotion of the eating disorder anorexia nervosa.)

Online participant observation poses the same problems that we discussed earlier when introducing this methodology, including ethical issues raised by the absence of informed consent by participants when covert observers are present. Moreover, while this research methodology provides the opportunity to observe individuals generally not receptive to being observed, and to generate hypotheses that may be tested in the laboratory or in offline groups, online participant observation is a time-consuming process, both in terms of observation and coding of data. In addition, researchers may not always be able to generalize their results from online observation to face-to-face interactions or to other virtual communities. (See Utz, 2010, for a discussion of these issues and for helpful suggestions on using online participant observation.)

Structured Observation
There are a variety of observational methods using intervention that are not easily categorized. These procedures differ from naturalistic observation because researchers intervene to exert some control over the events they are observing. The degree of intervention and control over events is less, however, than that seen in field experiments (which we describe briefly in the next section and in more detail in Chapter 6). We have labeled these procedures **structured observation**. Often the observer intervenes in order to cause an event to occur or to “set up” a situation so that events can be more easily recorded.

Researchers may create elaborate procedures to investigate a particular behavior fully. In a study of a phenomenon called inattentional blindness, researchers examined people’s ability to notice unusual events while using a cell phone (Hyman, Boss, Wise, McKenzie, & Caggiano, 2009). Inattentional blindness occurs when people fail to notice new and distinctive stimuli in their environment, particularly when attention is focused elsewhere, such as a cell phone conversation. In their study the researchers used a *confederate*, that is, an individual in the research situation who is instructed to behave a certain way in order to create a situation for observing behavior. In Hyman et al.’s study, a confederate dressed as a clown rode a unicycle around a large sculpture in a central plaza area on a university campus (see Figure 4.3). Over a 1-hour period in which the clown was present, interviewers asked pedestrians who walked across the plaza whether they had seen anything unusual. If they answered yes, they were asked to specify what they had seen. If pedestrians did not mention the clown, they were asked specifically whether they had seen the unicycling clown.

This structured-observation procedure created the context for noting whether people are more likely to exhibit inattentional blindness while using a cell phone. The researchers classified pedestrians into one of four groups: cell phone user, single walker (with no electronics), walking singly while listening
to music (e.g., using an MP3 player), or walking as a pair. Results indicated the cell phone users were least likely to notice the clown. Only 25% of cell phone users noticed the clown, compared to 51% of pedestrians walking alone, 61% of those listening to music, and 71% of individuals walking in pairs. Note that the individuals who might experience distractions due to music or walking with another person were more likely to notice the clown. This suggests that something particular about the divided attention when using a cell phone may be related to inattentional blindness. Hyman et al. (2009) note that if such a high degree of inattentional blindness is present during the simple activity of walking, the “blindness” that occurs with cell phone use may be much greater while driving a car.

Structured observations may be arranged in a natural setting, as in the Hyman et al. (2009) study, or in a laboratory setting. Clinical psychologists often use structured observations when making behavioral assessments of parent-child interactions. For example, researchers have observed play between mothers and children from maltreating (e.g., abusing, neglecting) families and nonmaltreating families (Valentino, Cicchetti, Toth, & Rogosch, 2006). Mothers were videotaped in a laboratory setting through a one-way mirror while interacting with their children in different contexts arranged by the researchers. In these structured observations, children from abusing families engaged in
less independent play than children from nonmaltreating families, and mothers in these families differed in their attention-directing behaviors. Valentino et al. suggest their study sheds light on the effect of a maltreating environment on children’s social cognitive development, and they discuss implications for intervention.

Developmental psychologists frequently use structured observations. Jean Piaget (1896–1980) is perhaps most notable for his use of these methods. In many of Piaget’s studies, a child is first given a problem to solve and then given several variations of the problem to test the limits of the child’s understanding. These structured observations have provided a wealth of information regarding children’s cognition and are the basis for Piaget’s “stage theory” of intellectual development (Piaget, 1965).

More recently, Evans and Lee (2013) used a simple structured observation to investigate lying in very young children. They tested 2- and 3-year-old children individually in a quiet room. A researcher presented each child with a gift bag, but asked the child not to peek while she went away to get a bow for the gift. Hidden cameras captured the children’s behavior while the researcher was gone. Overall, 80 percent of the children peeked, and while most 2-year-old peekers confessed, 90 percent of the oldest peekers (43–48 months) lied about having peeked. The researchers suggest that “lying is an early developmental milestone” that emerges with increased cognitive development, and that younger children’s “honesty” is not because they are morally inclined to tell the truth, but because they lack the necessary cognitive functioning (p. 5).

Structured observation is a middle ground between the passive nonintervention of naturalistic observation and the systematic control and manipulation of independent variables in laboratory experiments. This compromise allows researchers to make observations in more natural settings than the laboratory. Nevertheless, there may be a price to pay. If observers fail to follow similar procedures each time they make an observation, it is difficult for other observers to obtain the same results when investigating the same problem. Uncontrolled, and perhaps unknown, variables may play an important part in producing the behavior under observation. To prevent this problem, researchers must be consistent in their procedures and try to “structure” their observations as similarly as possible across observations.

Field Experiments When a researcher manipulates one or more independent variables in a natural setting in order to determine the effect on behavior, the procedure is called a field experiment. The field experiment represents the most extreme form of intervention in observational methods. The essential difference between field experiments and other observational methods is that researchers exert more control in field experiments when they manipulate an independent variable. Field experiments are frequently used in social psychology. Researchers who study inattentional blindness could vary the type of distinctive stimulus in the environment, for example, by comparing the effect of a unicycling clown versus a child on a skateboard. Such a study would appropriately be labeled a field experiment given that an independent variable (type of stimulus) is manipulated. As way of further illustration, consider a field experiment in which
researchers manipulated the type of image displayed on charity collection buckets in a supermarket (Powell, Roberts, & Nettle, 2012). Buckets displaying an “eye image” increased donations by nearly 50 percent relative to control images (stars). The investigators offered an explanation from an ethological perspective (see Box 4.2 in this chapter), namely, that over evolutionary time, humans have become sensitive to cues (eyes) associated with social consequences. Our discussion of experimental methods will continue in Chapter 6.

Indirect (Unobtrusive) Observational Methods

- An important advantage of indirect observational methods is that they are nonreactive.
- Indirect, or unobtrusive, observations can be obtained by examining physical traces and archival records.

We have been discussing observational methods in which an observer directly observes and records behavior in a setting. However, behavior can also be observed indirectly through records and other evidence of people’s behavior. These methods are often called **unobtrusive measures** because the researcher does not intervene in the situation and individuals are not aware of the observations. An important advantage of these methods is that they are nonreactive. A behavioral measure is reactive when participants’ awareness of an observer

STRETCHING EXERCISE

In this exercise we ask you to respond to the questions that follow this brief description of an observational study.

A psychology graduate student conducts an observational study of heterosexual couples eating in a university cafeteria. She wishes to find out which member of the pair (man or woman) is more likely to interrupt the meal by using an electronic device (e.g., phone, tablet). The investigator enlists several undergraduate students to aid her in making observations.

Two members of her team observe couples seated in the cafeteria for one hour at lunch and dinner over a 5-day period. Observations are made during four 15-minute intervals. A staircase next to the cafeteria allows a view of the eating area and observers sit on the stairs to record their observations. When the observation period begins, each observer selects a couple to observe for 15 minutes or until the couple gets up to leave. The observer notes whether the man or woman uses an electronic device while seated at the table.

By the end of the 5-day observation period, a total of 80 couples had been observed for all or part of the 15-minute observation interval. In 60 of these 80 cases, one or both persons used an electronic device. Of these 60 occasions in which an electronic device was used, there were 50 instances (40 men, 10 women) in which only one person of the couple used the device. In the remaining 10 cases, both persons used an electronic device. The graduate student concluded that men are more likely than women to interrupt a meal to use an electronic device.

1. What type of observational method did the graduate student use in this study?
2. How would you describe the sampling procedure?
3. Do you think the results support the graduate student’s conclusion?
4. What concerns do you have about the way observations were made in this study?
affects the measurement process. Because unobtrusive observations are made indirectly, it is impossible for people to react, or change their behavior, while researchers observe. Unobtrusive methods also yield important information that can confirm or challenge conclusions based on direct observation, making these methods an important tool in the multimethod approach to research.

In this section we will describe these indirect methods, which involve the investigation of physical traces and archival records (see Table 4.1).

Physical Traces

- Two categories of physical traces are “use traces” and “products.”
- Use traces reflect the physical evidence of use (or nonuse) of items and can be measured in terms of natural or controlled use.
- By examining products people own or the products produced by a culture, researchers test hypotheses about attitudes, preferences, and behavior.
- The validity of physical trace measures is examined by considering possible sources of bias and by seeking converging evidence.

A well-known literary figure was asked if she had a “standby cookbook.” She didn’t, but said she could identify her husband’s favorite cookbook “because it smells like garlic and is filthy with food stains” (*The New York Times Book Review*, April 8, 2013, p. 8). Examining physical evidence of past behavior can provide important clues about the characteristics of individuals and events (Gosling, 2010). **Physical traces** are the remnants, fragments, and products of past behavior. Two categories of physical traces are “use traces” and “products.”

Use traces are what the label implies—the physical evidence that results from the use (or nonuse) of an item. Remains of cigarettes in ashtrays, aluminum cans in a recycling bin, and litter on a campus walkway are examples of use traces. Clock settings are a use trace that may tell us about the degree to which people in different cultures are concerned with punctuality, and marks in textbooks may inform researchers which topics students study the most.

In addition, we can classify use traces according to whether the researcher intervenes while collecting data regarding the use of particular items. **Natural-use traces** are observed without any intervention by a researcher and reflect...
naturally occurring events. In contrast, controlled-use traces result from some intervention by a researcher.

Researchers relied on unobtrusive measures of behavior as part of an ingenious series of studies examining how environmental factors might decrease food intake and, consequently, reduce obesity among Americans. In one study college students were given tubes containing stacks of potato chips to eat while watching a movie (Geier, Wansink, & Rozin, 2012). In some of the tubes, researchers had inserted colored chips at regular intervals (e.g., every 7th chip). Other tubes contained no colored chips. The number of chips each student consumed was measured at the end of the movie. Students eating from the tubes with colored chips ate approximately 50 percent less chips. We can suggest that number of chips eaten from the unsegmented stacks is a natural-use trace of students’ eating behavior. In contrast, the number of chips eaten from the segmented stacks with colored chips represents a controlled-use trace because the researchers intervened, or altered, the stack of potato chips. The researchers offered several possible explanations for their results, one being that the segmentation cues (i.e., colored chips) broke automatic eating behavior by introducing a pause.

Products are the creations, constructions, or other artifacts of behavior. Anthropologists often are interested in the surviving products of ancient cultures. By examining the types of vessels, paintings, tools, and other artifacts, anthropologists can describe patterns of behavior from thousands of years ago. Plenty of modern-day products provide insight into our culture and behavior, including television shows, music, fashion, and electronic devices. For instance, vehicle bumper stickers permit an acceptable outlet for the expression of public emotion and also allow individuals to reveal their identification with particular groups and beliefs (Endersby & Towle, 1996; Newhagen & Ancell, 1995). Tattoos and body piercings may function in a similar way in some cultures (Swami, 2012; see Figure 4.4 in this chapter).

The examination of products allows researchers to test important hypotheses about behavior. For example, psychologists examined food-related products in the United States and France to investigate the “French paradox” (Rozin, Kabnick, Pete, Fischler, & Shields, 2003). The term “French paradox” refers to the fact that obesity rates and the mortality rate from heart disease are much lower in France than the United States, despite the fact that the French eat more fatty foods and fewer reduced-fat foods than Americans. Several hypotheses have been offered for these differences, ranging from metabolism differences, stress levels, and consumption of red wine. Rozin et al. hypothesized that the French simply eat less, and they examined food products, specifically portion sizes, in both countries to test this hypothesis. They found that American restaurant portions were on average 25% greater than in comparable French restaurants, and that portion sizes on American supermarket shelves were generally larger. Their observation of products supported their hypothesis that the differences in obesity and mortality due to heart disease are because the French eat less than Americans.

Physical traces offer researchers valuable and sometimes innovative means to study behavior, and the measures available are limited only by the ingenuity and resourcefulness of the investigator. However, the validity of physical-trace
measures must be examined carefully and verified through independent sources of evidence. Validity refers to the truthfulness of a measure and we must ask, as with all measurement, whether physical traces truthfully inform us about people’s behavior.

Bias can be introduced in the way use traces are laid down and the manner in which traces survive over time. For example, does a well-worn path to the right in a museum indicate people’s interest in objects in that direction or simply a natural human tendency to turn right? Does the number of cans found in recycling containers at a university reflect students’ preferences for certain brands or simply what is available in campus vending machines? Do product sizes on supermarket shelves in America and France reflect different family sizes in the two countries or preferences for portion sizes? Whenever possible, researchers need to obtain supplementary evidence for the validity of physical traces (see Webb et al., 1981). Alternative hypotheses for observations of physical traces must be considered and care must also be taken when comparing results across studies to make sure that measures are defined similarly.

Archival Records

- Archival records are the public and private documents describing the activities of individuals, groups, institutions, and governments, and comprise running records and records of specific, episodic events.
• Archival data are used to test hypotheses as part of the multimethod approach, to establish the external validity of laboratory findings, and to assess the effects of natural treatments.
• Potential problems associated with archival records include selective deposit, selective survival, and the possibility of spurious relationships.

Consider for a moment all of the data about you that exist in various records: birth certificate; school enrollment and grades; credit/debit card purchases; driver’s license, employment and tax records; medical records; voting history; e-mail, texting, and cell phone accounts; and if you’re active on sites such as Facebook and Twitter, countless entries describing your daily life. Now multiply this by the millions of other people for whom similar records exist and you will only touch upon the amount of data “out there.” Add to this all of the data available for countries, governments, institutions, businesses, media, and you will begin to appreciate the wealth of data available to psychologists to describe people’s behavior using archival records.

Archival records are the public and private documents describing the activities of individuals, groups, institutions, and governments. Records that are continuously kept and updated are referred to as running records. The records of your academic life (e.g., grades, activities) are an example of running records, as are the continuous records of sports teams and the stock market. So, too, are Facebook entries, which provide a window on behavior in a naturalistic setting (e.g., Wilson, Gosling, & Graham, 2012; www.facebookinthesocialsciences.org). One researcher, for example, examined “national happiness” by recording and analyzing millions of “status updates” on Facebook (Kramer, 2010). Facebook profiles also can be used to analyze users’ personality traits, such as social anxiety (Fernandez, Levinson, & Rodebaugh, 2012). Other records, such as personal documents (e.g., birth certificates, marriage licenses), are more likely to describe specific events or episodes, and are referred to as episodic records (Webb et al., 1981).

As measures of behavior, archival data share some of the same advantages as physical traces. They are unobtrusive measures that are used to complement hypothesis testing based on other methods, such as direct observation, laboratory experiments, and surveys. When findings from these various approaches converge (or agree), the external validity of the findings increases. That is, we can say the findings generalize across the different research methods and enhance support for the hypothesis being tested. For example, recall the physical trace measures relating to portion size used to test the hypothesis concerning the “French paradox,” namely, that the French eat less than Americans (Rozin et al., 2003). These researchers also examined archival records to test their hypothesis. They examined restaurant guides in two cities, Philadelphia and Paris, and recorded the number of references to “all-you-can-eat” buffets. Using an existing archival record (restaurant guides), they found converging evidence for their hypothesis: Philadelphia had 18 all-you-can-eat options and Paris had none.

Researchers may examine archives to assess the effect of a natural treatment. Natural treatments are naturally occurring events that significantly impact society or individuals. Because it is not always possible to anticipate these events, researchers who want to assess their impact must use a variety of behavioral measures, including archival data. Acts of terrorism such as 9/11, drastic...
economic events such as the worldwide economic collapse in 2008, and the enactment of new laws and reforms are examples of the kinds of events that may have important effects on behavior and can be investigated using archival data. Also, individuals experience naturally occurring events in their lives, such as death or divorce of parents, chronic illness, or relationship difficulties. The effects of these events can be explored using archival data. For example, a researcher may examine school records of absenteeism or grades to investigate children’s responses to parental divorce.

Researchers gain several practical advantages by using archival records. Archival data are plentiful and researchers can avoid an extensive data collection stage—data are simply waiting for researchers! Also, because archival information is often part of the public record and usually does not identify individuals, ethical concerns are less worrisome. As more and more archival sources become available through the Internet, researchers will find it even easier to examine behavior in this way (see Box 4.3).

Researchers, however, need to be aware of the problems and limitations of archival records. Two problems are selective deposit and selective survival (see Webb et al., 1981). These problems occur because there are biases in how archives are produced. Selective deposit occurs when some information is selected to be deposited in archives, but other information is not. For example, consider that great archive, the high school yearbook. Not all activities, events, and groups are selected to appear in the yearbook. Who decides what is prominently displayed in the yearbook? When some events, activities, or groups have a better chance to be selected than others, bias exists. Or consider the fact that politicians and others who are constantly exposed to reporters know how to “use” the media by declaring that some statements are “off the record.” This can be seen as a problem of selective deposit—only certain information is “for the record.” You might also recognize this as a problem of reactivity, in that when deciding what is “for the record,” individuals are reacting to the fact that their remarks are being recorded.

Key Concept

- Do school teachers cheat on tests so that they and their students will look good?
- Do police really lower crime rates?
- Why does capital punishment not deter criminals?
- Which is more dangerous to your child: the family owning a swimming pool or a gun?
- Why are doctors so bad at washing their hands?
- What’s the best way to catch a terrorist?
- Are people hard-wired for altruism or selfishness?
- Why is chemotherapy prescribed so often if it’s so ineffective?

These questions, and others, were asked by the maverick social scientist Steven D. Levitt in his best-selling books, *Freakonomics* and *SuperFreakonomics* (Levitt & Dubner, 2005; 2009). The answers he gives come from archival analyses of student test scores, sports records, crime statistics, birth and death statistics, and much more. We won’t give away all the answers based on this clever researcher’s mining of society’s archives, but we will say that in this era of high-stakes testing, public school teachers sometimes cheat, and if you own both a gun and a swimming pool, your child is 100 times more likely to die by drowning than by gunplay (see www.freakonomics.com).
Researchers who analyze Facebook profiles recognize that information displayed may sometimes be false or may represent an “idealized self,” rather than a user’s actual personality (e.g., Back et al., 2010). It can generally be expected that many users will seek to enhance their self-image by strategically organizing information, with perhaps a bit of exaggeration (see Walther et al., 2008).

Selective survival arises when records are missing or incomplete (something an investigator may not even be aware of). Researchers must consider whether some records “survived,” whereas others did not. Documents that are particularly damaging to certain individuals or groups may vanish, for example, during the change from one presidential administration to another. Family photo albums may “mysteriously” lose photos of individuals now divorced or photos from “fat years.” Advice columnists and editors of magazines and newspapers print only a fraction of the letters they receive; that is, only some of the letters “survived” to be printed.

Another problem that can occur in the analysis of archival data is the possibility of identifying a spurious relationship. A spurious relationship exists when evidence falsely indicates that two or more variables are associated (see Chapter 5). False evidence can arise because of inadequate or improper statistical analyses, or more often, when variables are accidentally or coincidentally related. An association, or correlation, between two variables can occur when another, usually unidentified, third variable accounts for the relationship. For instance, archival records indicate that ice cream sales and crime rates are associated (as ice cream sales increase, so also do crime rates). Before we can conclude that eating ice cream causes people to commit crimes, it is important to consider that both variables, ice cream sales and crime rates, are likely affected by a third variable, seasonal temperatures. The spurious relationship between ice cream sales and crime rates can be accounted for by the third variable, temperature.

The possibility of biases due to selective deposit and selective survival, as well as spurious relationships, causes researchers to be appropriately cautious in reaching final conclusions based solely on the outcome of an archival study. Archival data are most useful when they provide complementary evidence in a multimethod approach to the investigation of a phenomenon.

Recording Behavior

- The goals of observational research determine whether researchers seek a comprehensive description of behavior or a description of only selected behaviors.
- How the results of a study are ultimately summarized, analyzed, and reported depends on how behavioral observations are initially recorded.

In addition to direct and indirect observation, observational methods also differ in the manner in which behavior is recorded. Sometimes researchers seek a comprehensive description of behavior and the situation in which it occurs. More often, they focus on only certain behaviors or events. Whether all behavior in a setting or only selected behaviors are observed depends on the researchers’ goals. The important choice of how behavior is recorded ultimately determines how the results are measured, summarized, analyzed, and reported.
Comprehensive Records of Behavior

- Narrative records in the form of written descriptions of behavior, and audio and video recordings, are comprehensive records.
- Researchers classify and organize data from narrative records to test their hypotheses about behavior.
- Narrative records should be made during or soon after behavior is observed, and observers must be carefully trained to record behavior according to established criteria.

When researchers seek a comprehensive record of behavior, they often use narrative records. **Narrative records** provide a more or less faithful reproduction of behavior as it originally occurred. To create a narrative record, an observer can write descriptions of behavior, or use audio or video recordings. For example, videos were used to record the mother-child interactions among maltreating and nonmaltreating families described earlier (Valentino et al., 2006). To examine issues of sexuality and identity of teens participating in an online chat room, researchers examined a 30-minute session of online discourse randomly sampled from sessions recorded over a two-month period (Subrahmanyam et al., 2004). The transcript of the teen conversations ran to 19 pages with 815 lines. There are ways to automate the recording of online behavior, and computer programs are available to help analyze the qualitative data obtained (see Utz, 2010).

Once narrative records are created, researchers can study, classify, and organize the records to test their hypotheses about the behaviors under investigation. Narrative records differ from other forms of recording and measuring behavior because the classification of behaviors is done after the observations are made. Thus, researchers must make sure that the narrative records capture the information that will be needed to evaluate the hypotheses of the study.

Narrative records do not always prevent inferences and impressions by the observer, nor are narrative records always meant to be comprehensive descriptions of behavior. For example, **field notes** include only the observer’s running descriptions of the participants, events, settings, and behaviors that are of particular interest to the observer, and may not contain an exact record of everything that occurred. Field notes are used by journalists, social workers, anthropologists, psychologists, and others, and are probably used more frequently than any other kind of narrative record. Events and behaviors are likely to be interpreted in terms of the observer’s specialized knowledge and field notes tend to be highly personalized (Brandt, 1972). For example, a clinical psychologist may record specific behaviors of an individual with knowledge of that individual’s diagnosis or particular clinical issues. The usefulness of field notes as scientific records depends on the accuracy and precision of their content which, in turn, depend critically on the training of the observer and the extent to which the recorded observations can be verified by independent observers and through other means of investigation.

Practical and methodological considerations dictate the manner in which narrative records are made. **As a general rule, records should be made during or as**
soon as possible after behavior is observed. The passage of time blurs details and makes it harder to reproduce the original sequence of actions. Decisions regarding what should be included in a narrative record, the degree of observer inference, and the completeness of the narrative record must be decided prior to beginning a study. Once the content of narrative records is decided, observers must be trained to record behavior according to the criteria that have been set up. Practice observations may have to be conducted and records critiqued by more than one investigator before “real” data are collected.

Selected Records of Behavior

- When researchers seek to describe specific behaviors or events, they often obtain quantitative measures of behavior, such as the frequency or duration of its occurrence.
- Quantitative measures of behavior use one of four levels of measurement scales: nominal, ordinal, interval, and ratio.
- Rating scales, often used to measure psychological dimensions, are frequently treated as if they are interval scales even though they usually represent ordinal measurement.
- Electronic recording devices may be used in natural settings to record behavior, and pagers sometimes are used to signal participants to report their behavior (e.g., on a questionnaire).

Often researchers are interested only in certain behaviors or specific aspects of individuals and settings. They may have specific hypotheses about the behavior they expect and clear definitions of the behaviors they are investigating. In this type of observational study, researchers typically measure the occurrence of the specific behavior while making their observations. For example, in their study of inattentional blindness, Hyman and his colleagues (2009) selected the behavior of whether people noticed the clown and quantified the number of people who noticed or did not notice the clown. That is, their operational definition of “inattentional blindness” was whether or not people noticed the clown (see Chapter 2 for discussion of operational definitions).

Suppose you wish to observe people’s reactions to individuals with obvious physical disabilities using naturalistic observation. First you would need to operationally define who is a “physically disabled person” and what constitutes a “reaction” to such a person. Are you interested in helping behaviors, approach/avoidance behaviors, eye contact, length of conversation, or in another physical reaction? Next you would need to decide how to measure these behaviors. Assume you choose to measure people’s reactions by observing eye contact between individuals with and without physical disabilities. Exactly how should you measure eye contact? Should you simply measure whether an individual does or does not make eye contact, or do you want to measure the duration of any eye contact? Your decisions will depend on the hypotheses or goals of your study, and will be influenced by information gained by reading previous studies that used the same or similar behavioral measures.
CHAPTER 4: Observation

115

Measurement Scales When researchers decide to measure and quantify specific behaviors they must decide what scale of measurement to use. There are four levels of measurement, or measurement scales, that apply to both physical and psychological measurement: nominal, ordinal, interval, and ratio. The characteristics of each measurement scale are described in Table 4.2, and a detailed description of measurement scales is provided in Box 4.4. You will need to keep these four measurement scales in mind as you select statistical procedures for analyzing the results of a research study. How data are analyzed depends on the measurement scale used. In this section we describe how the measurement scales are used in observational research.

A checklist is often used to record nominal scale measures. The observer simply "checks" whether or not a specific behavior occurred. Checklists often include space to record observations regarding characteristics of participants, such as their race, sex, and age, as well as characteristics of the setting, such as time of day, location, and whether other people are present. Researchers typically are interested in observing behavior as a function of these participant and context variables. For example, Hyman et al. (2009) classified pedestrians in their study of inattentional blindness into four categories based on whether they were walking alone or in pairs and whether they were using a cell phone or music player (note that other categories, such as people walking in groups of three or more, were excluded).

As noted in Box 4.4, the second level of measurement, an ordinal scale, involves ordering or ranking observations. An investigator, for example, may ask research participants to order various stimuli (e.g., objects, pictures, persons) along some dimension, such as attractiveness or preference. A child psychologist who asks children to identify which of three dolls they like best, next best, and the least, would be using an ordinal scale of measurement.

In order to quantify behavior in an observational study, observers sometimes make ratings of behaviors and events based on their subjective judgments about the degree or quantity of some trait or condition. Table 4.3 shows a scale used by trained observers to rate warmth and affection shown by mothers toward their infants (Dickie, 1987). Note the following characteristics of this 7-point scale. First, ratings of 1 represent the absence of or very little warmth and affection, with larger numbers indicating increased amounts of the trait. Second, precise verbal descriptions are included for the four odd-numbered scale values (1, 3, 5, 7) to aid...
observers when making their ratings. Even-numbered values (2, 4, 6) are used by observers to rate behavior falling between the odd-numbered descriptions. There is nothing sacred about a 7-point scale. Researchers frequently use scales with other endpoints, but generally do not go beyond a 10-point scale.

At first glance, a rating scale such as the one in Table 4.3 appears to represent an interval scale of measurement—there is no true zero and the intervals between numbers appear to be equal. Closer examination, however, reveals that most rating scales used by observers to evaluate people or events on a psychological dimension really yield only ordinal information. For a rating scale to be

BOX 4.4 MEASUREMENT “ON THE LEVEL”

The lowest level of measurement is called a nominal scale; it involves categorizing an event into one of a number of discrete categories. For instance, we could measure the color of people’s eyes by classifying them as “brown-eyed” or “blue-eyed.” When studying people’s reactions to individuals with obvious physical disabilities, a researcher might use a nominal scale by measuring whether participants make eye contact or do not make eye contact with someone who has an obvious physical disability.

Summarizing and analyzing data measured on a nominal scale is limited. The only arithmetic operations that we can perform on nominal data involve the relationships “equal” and “not equal.” A common way of summarizing nominal data is to report frequency in the form of proportion or percent of instances in each of the several categories.

The second level of measurement is called an ordinal scale. An ordinal scale involves ordering or ranking events to be measured. Ordinal scales add the arithmetic relationships “greater than” and “less than” to the measurement process. The outcome of a race is a familiar ordinal scale. When we know that an Olympic distance runner won a silver medal, we know the runner placed second but we do not know whether she finished second in a photo finish or trailed 200 meters behind the gold medal winner.

The third level of measurement is called an interval scale. An interval scale involves specifying how far apart two events are on a given dimension. On an ordinal scale, the difference between an event ranked first and an event ranked third does not necessarily equal the distance between those events ranked third and fifth. For example, the difference between the finishing times of the first- and third-place runners may not be the same as the difference in times between the third- and fifth-place runners. On an interval scale, however, differences of the same numerical size in scale values are equal. For example, the difference between 50 and 70 correct answers on an aptitude test is equal to the difference between 70 and 90 correct answers. What is missing from an interval scale is a meaningful zero point. For instance, if someone’s score is zero on a verbal aptitude test, he or she would not necessarily have absolutely zero verbal ability (after all, the person presumably had enough verbal ability to take the test). Importantly, the standard arithmetic operations of addition, multiplication, subtraction, and division can be performed on data measured on an interval scale. Whenever possible, therefore, psychologists try to measure psychological dimensions using at least interval scales.

The fourth level of measurement is called a ratio scale. A ratio scale has all the properties of an interval scale, but a ratio scale also has an absolute zero point. In terms of arithmetic operations, a zero point makes the ratio of scale values meaningful. Physical scales measuring time, weight, and distance can usually be treated as ratio scales. For example, someone who is 200 pounds weighs twice as much as someone who weighs 100 pounds.
truly an interval level of measurement, a rating of 2, for instance, would have to be the same distance from a rating of 3 as a rating of 4 is from 5 or a rating of 6 is from 7. It is highly unlikely that human observers can make subjective judgments of traits such as warmth, pleasure, aggressiveness, or anxiety in a manner that yields precise interval distances between ratings. However, most researchers assume an interval level of measurement when they use rating scales. Deciding what measurement scale applies for any given measure of behavior is not always easy. If you are in doubt, you should seek advice from knowledgeable experts so that you can make appropriate decisions about the statistical description and analysis of your data.

Checklists also can be used to measure the frequency of particular behaviors in an individual or group over a period of time. The presence or absence of specific behaviors is noted at the time of each observation. After all the observations are made, researchers add up the number of times a particular behavior occurred. In these situations, frequency of responding can be assumed to represent a ratio level of measurement. That is, if “units” of some behavior (e.g., occasions when a child leaves a classroom seat) are counted, then zero represents the absence of that specific behavior. Ratios of scale values also would be meaningful. For example, a child who leaves her seat 20 times would have exhibited the target behavior twice as much as a child who leaves his seat 10 times.

Electronic Recording and Tracking Behavior also can be measured using electronic recording and tracking devices. For example, as part of a study investigating the relationship between cognitive coping strategies and blood pressure among college students, participants wore an ambulatory blood pressure monitor on two “typical” school days, including a day with an exam (Dolan, Sherwood, & Light, 1992). Participants also completed questionnaires about

<table>
<thead>
<tr>
<th>Scale Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>There is an absence of warmth, affection, and pleasure. Excessive hostility, coldness, distance, and isolation from the child are predominant. Relationship is on an attacking level.</td>
</tr>
<tr>
<td>2</td>
<td>There is occasional warmth and pleasure in interaction. Parent shows little evidence of pride in the child, or pride is shown in relation to deviant or bizarre behavior by the child. Parent’s manner of relating is contrived, intellectual, not genuine.</td>
</tr>
<tr>
<td>3</td>
<td>There is moderate pleasure and warmth in the interaction. Parent shows pleasure in some areas but not in others.</td>
</tr>
<tr>
<td>4</td>
<td>Warmth and pleasure are characteristic of the interaction with the child. There is evidence of pleasure and pride in the child. Pleasure response is appropriate to the child’s behavior.</td>
</tr>
</tbody>
</table>

*From materials provided by Dr. Jane Dickie.
their coping strategies and daily activities. The researchers compared blood pressure readings for different times of the day and as a function of coping style. Students who exhibited “high self-focused coping” (e.g., “keep to themselves and/or blame themselves in stressful situations,” p. 233) had higher blood pressure during and after an exam than did those who did not use self-focused coping strategies.

Another electronic method is the “Internet daily diary” in which participants log on daily to a secure Internet site (with e-mail reminders) to report on daily events. In a study of college students’ moods and coping, students reported everyday their most stressful event and how they coped with it (Park, Armeli, & Tennen, 2004). Results of this study indicated that positive moods were linked more with problem-focused coping strategies than with avoidance strategies, especially when the stressful events were perceived as controllable. Other researchers have asked participants to carry hand-held computers and to make “electronic diary” notes when prompted (e.g., McCarthy, Piasecki, Fiore, & Baker, 2006; Shiffman & Paty, 2006). When electronic recording and tracking methods rely on participants’ self-reports of mood and activities, and not on direct observation of their behavior, it is important to consider possible biases in data collection (e.g., possible misrepresentation or omission of activities; see Larson, 1989, for a discussion of possible biases).

Analysis of Observational Data

- Researchers choose qualitative data analysis or quantitative data analysis to summarize observational data.

After recording their observations of behavior, researchers analyze observational data in order to summarize people’s behavior and to determine the reliability of their observations. The type of data analysis that researchers choose depends on the data they’ve collected and the goals of their study. For example, when researchers record selected behaviors using a measurement scale, the preferred data analysis is quantitative (i.e., statistical summaries and analyses). When comprehensive narrative and archival records are obtained, researchers may choose either quantitative or qualitative analyses. We will describe qualitative analyses first.

Qualitative Data Analysis

- Data reduction is an important step in the analysis of narrative and archival records.
- Researchers code behaviors according to specific criteria, for example, by categorizing behaviors.
- Content analysis is used to examine narrative and archival records and includes three steps: identifying a relevant source, sampling sections from the source, and coding units of analysis.

Observational studies that rely on comprehensive records of behavior can provide a wealth of information, often found in pages and pages of data, or
lengthy video and audio recordings. This information also may include archival data obtained from blogs, social networking sites, and other online records (e.g., YouTube). Essentially, any form of communication, including television and radio programs, films, speeches, interviews, or “tweets,” is open to analysis.

Qualitative data analysis can take several different forms. Qualitative researchers typically seek meaning in narrative records by identifying themes and categories of behavior and then providing a verbal interpretation or summary. Researchers often do not begin with a hypothesis; instead, they generate hypotheses from their analyses. If numbers are used, they tend to be in the form of simple tabulations rather than statistical analyses (e.g., see Silverman, 2011, for a discussion of these and other characteristics of qualitative data analysis).

The sheer amount of information available in a narrative record can be daunting and typically requires some form of data reduction, that is, the process of abstracting and summarizing behavioral data. In qualitative data analysis, data reduction occurs when researchers verbally summarize information, identify themes, categorize and group pieces of information, and incorporate their own observations about the narrative records. Researchers use both inductive and deductive reasoning to gain understanding, always aware of the ways in which their personal background informs the interpretation of the record (Creswell, 2013).

Whether using qualitative or quantitative analysis, researchers follow three important steps when analyzing narrative records: identifying a relevant source, sampling selections from the source, and coding units of analysis. A relevant source is one that allows researchers to answer the research questions posed by the study. This process can be relatively straightforward. For example, in Chapter 2 we described a qualitative study by Kidd and Kral (2002) that sought to understand the experiences of urban street youth. In this case, the research question clearly dictated the relevant source: young people living on the street. At other times, selecting a source requires a bit of ingenuity, as demonstrated by investigators choosing to observe conversations in an online teen chat room in order to explore adolescent concerns about sexuality and identity (Subrahmanyam et al., 2004).

The second step in qualitative analysis involves sampling appropriately from the source. Many archival sources are so extensive that it would be impossible to analyze all the information in the source; therefore, investigators must select some of the data, recognizing their choices will affect the representativeness of their sample. Qualitative researchers often choose a source for convenience or interest (Silverman, 2011). For example, to perform their analysis of teen discourse in an online chat room, researchers sampled from a set of sessions previously monitored and recorded over a 2-month period (Subrahmanyam et al., 2004).

The third step in analyzing a source is coding, which is the identification of units of behavior (including categories or themes) that are related to the goals of the study. One definition of content analysis is any objective coding technique that allows researchers to make inferences based on specific characteristics of the records (Holsti, 1969). Coding can be relatively simple, such as identifying in written transcripts the nicknames used by participants in an online chat room, or references to particular behaviors. However, qualitative data analysis of written
narratives, such as online blogs, will seek to code overall themes as well as affect, that is, feelings and needs expressed by the writer (e.g., Mazur, 2010; see Saldaña, 2013, for an overview of coding strategies when analyzing qualitative data).

As with the choice of a source, the goals of the study will determine the descriptive categories and themes to be coded. In order for coders to make reliable judgments about the content, they must be carefully trained and precise definitions must be used. For example, in a study of adolescents’ self-injury behaviors, researchers used a set of binary (present/absent) codes to analyze the content of Internet message boards related to adolescent self-injury (Whitlock, Powers, & Eckenrode, 2006). They derived their codes from interviews with self-injurers and from observations of messages posted on the Internet. They then examined 3,219 Internet postings from 10 Internet message boards over a 2-month period and coded, or categorized, the content into different themes, such as motivation for self-injury and methods of concealing their behavior. Data reduction using coding allows researchers to determine relationships between specific types of behavior and the events that are antecedents of these behaviors. Whitlock and her colleagues, for instance, identified “triggers” of self-injury behaviors in their coding and were able to identify the proportion of messages that described each trigger. Based on their coding, they observed that “conflict with important others” was the most frequent trigger (34.8%) of self-injury.

Our emphasis in this book is on quantitative data analysis. Consequently, we are able to provide only the briefest introduction to qualitative data analysis. Many systematic treatments of qualitative methodology are available for those students who wish to learn more about this important approach to psychological research (e.g., Miles, Huberman, & Saldaña, 2013; Saldaña, 2013; Silverman, 2011).

Quantitative Data Analysis

- Data are summarized using descriptive statistics such as frequency counts, means, and standard deviations.
- Interobserver reliability refers to the extent to which independent observers agree in their observations.
- Interobserver reliability is increased by providing clear definitions about behaviors and events to be recorded, by training observers, and by providing feedback about the accuracy of observations.
- High interobserver reliability increases researchers’ confidence that observations about behavior are accurate (valid).
- Interobserver reliability is assessed by calculating percentage agreement or correlations, depending on how the behaviors were measured and recorded.

The goal of quantitative data analysis is to provide a numerical, or quantitative, summary of observations in a study. An important step is to calculate descriptive statistics that summarize the observational data, such as relative frequency, means, and standard deviations. Another important aspect of analyzing observational data is assessing the reliability of the observations. Unless the observations are reliable, they are unlikely to tell us anything meaningful about behavior. We will describe each of these aspects of quantitative data analysis in turn.
Descriptive Statistics The type of descriptive statistics used to summarize observational data depends on the scale of measurement used to record the data. As we saw, a nominal scale of measurement is used when behaviors and events are classified into mutually exclusive categories. Because a frequently used nominal measurement is whether a behavior is present or absent, the most common descriptive statistic for the nominal scale is relative frequency. To calculate a relative frequency the number of times a behavior or event occurs is tallied and then divided by the total number of observations. Relative frequency measures are expressed as either a proportion or a percentage (by multiplying the proportion by 100). We mentioned earlier that Whitlock and her colleagues coded triggers for self-injury behavior among adolescents, with the most frequent trigger being “conflict with important others.” They counted 212 mentions of conflict among the 609 messages in which triggers were mentioned. The relative frequency, then, is \(\frac{212}{609} \), or 34.8% of the messages.

When describing ordinal data, researchers often report the item most frequently ranked first among a set of items. In surveys addressing citizens’ concerns about their country, for example, researchers may ask people to rank order items such as the economy, wars, education, environment, national security, and so forth, in terms of the priority for government action. When reporting the results, researchers may describe an item according to the percentage of people who ranked it first, such as “35% of respondents ranked the economy as their top priority for government action” (hypothetical data). A more complete description would include the percentage of first-rankings for the remaining items, such as “28% of respondents indicated the environment is their top priority, 25% indicated that wars are their top priority,” and so on. Another way to describe ordinal data focuses on describing the percentages of 1st, 2nd, and 3rd, etc. rankings for a particular item selected from among the set of items. Hypothetically, this might appear as “35% of respondents ranked the economy as 1st priority, 25% of respondents ranked the economy as their 2nd in priority, 12% ranked it 3rd,” and so on.

Different—and more informative—descriptive statistics are reported when behavior is recorded on at least an interval scale of measurement. One or more measures of central tendency are used when observations are recorded using interval-scale ratings or when ratio-scale measures of time (duration, latency) are used. The most common measure of central tendency is the arithmetic mean, or average. The mean describes the “typical” score in a group of scores and provides a useful measure to summarize the performance of an individual or group. For a more complete description of performance, researchers also report a measure of variability or dispersion of scores around the mean. The standard deviation approximates the average distance of a score from the mean.

Now may be a good time to review measures of central tendency and variability, as well as general guidelines for systematically analyzing data sets. The first few pages of Chapter 11 are devoted to these issues.
To illustrate the use of descriptive statistics, consider the following study. Many people believe that individuals from different cultures also differ in their core personality traits. Mexicans, for example, are often seen as more sociable and extraverted than Americans. Nevertheless, results of cross-cultural studies using self-report measures of extraversion generally find that Mexicans report being less extraverted than Americans (Ramírez-Esparza, Mehl, Álvarez-Bermúdez, & Pennebaker, 2009). What explains this counterintuitive finding? One possibility is that individuals’ perceptions of how they behave (self-report) do not correspond with how they actually behave. To investigate this explanation for the previous findings, researchers made systematic observations of social behavior in naturalistic settings (Ramírez-Esparza et al., 2009).

Their study made use of an electronically activated recorder (EAR), which participants wore on their belts or in a purse-like bag (see Box 4.1 in this chapter). By capturing periodic, brief snippets of ambient sounds, the EAR provided an acoustic log of participants’ daily routines. Students from both an American (N = 46) and Mexican (N = 46) university were asked to wear the EAR “as much as possible” during waking hours for two weekdays. The EAR was programmed to make 30-second recordings every 12.5 minutes. Research assistants coded the recordings using four categories: location (e.g., apartment, in transit), activity (e.g., eating, listening to music), interaction (e.g., alone, talking), mood (e.g., laughing, crying). From these a “composite measure of behavioral sociability” was derived (see Ramírez-Esparza et al., 2009, for details).

Table 4.4 gives the means and standard deviations for the EAR-derived sociability scores. The means indicate that on average, Mexican students behaved more sociably than American students, and within each nationality, men behaved more sociably than women. The standard deviations reveal that Americans showed less variability than did Mexicans. On the other hand, standard paper-and-pencil self-report measures of sociability revealed that Americans reported themselves as more sociable than did Mexicans, demonstrating that self-reports of behavior do not necessarily correspond with actual behavior.

TABLE 4.4
MEANS AND STANDARD DEVIATIONS DESCRIBING THE AMOUNT OF SOCIABILITY SHOWN BY AMERICAN AND MEXICAN STUDENTS*

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men (n = 25)</td>
<td>25.37</td>
<td>10.46</td>
</tr>
<tr>
<td>Women (n = 29)</td>
<td>20.28</td>
<td>9.18</td>
</tr>
<tr>
<td>Overall</td>
<td>22.64</td>
<td>10.03</td>
</tr>
<tr>
<td>Mexican</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men (n = 20)</td>
<td>36.51</td>
<td>16.79</td>
</tr>
<tr>
<td>Women (n = 26)</td>
<td>30.79</td>
<td>16.27</td>
</tr>
<tr>
<td>Overall</td>
<td>33.27</td>
<td>13.63</td>
</tr>
</tbody>
</table>

*Data provided by Dr. Nairán Ramírez-Esparza.
Observer Reliability In addition to descriptive statistics, researchers examine the extent to which the observations in their study are reliable. You may recall that reliability refers to consistency, and an analysis of reliability in an observational study asks if independent observers viewing the same events would obtain the same results. The degree to which two (or more) independent observers agree is referred to as **interobserver reliability**. When observers disagree, we become uncertain about what is being measured and the behaviors and events that actually occurred. Low interobserver reliability is likely to result when the event to be recorded is not clearly defined and observers are left to their own subjective judgments to make decisions about behavior. In addition to providing precise verbal definitions to improve reliability among observers, researchers can give concrete examples, including photographs and videos of specific behaviors to be observed. Interobserver reliability is also generally increased by training observers and giving them opportunities to practice making their observations. It is especially helpful during the training and practice to give observers specific feedback regarding any discrepancies between their observations and those of others (Judd, Smith, & Kidder, 1991).

When two independent observers agree, we are generally more inclined to believe that their observations are accurate and valid than when data are based on the observations of a single observer. In order for observers to be independent, each must be unaware of what the other has recorded. The chance of both observers being influenced to the same degree by expectancies, fatigue, or boredom is generally small enough that we can be confident that what they agree upon in their reports actually occurred. Of course, the more independent observers agree, the more confident we become.

The way in which interobserver reliability is assessed depends on how behavior is measured. When events are classified according to mutually exclusive categories (nominal scale), observer reliability is generally assessed using a percentage agreement measure. A formula for calculating percentage agreement between observers is

\[
\frac{\text{Number of times two observers agree}}{\text{Number of opportunities to agree}} \times 100
\]

Although there is no hard-and-fast rule that defines low interobserver reliability, researchers generally report estimates of reliability that exceed 85% in the published literature, suggesting that percentage agreement much lower than that is unacceptable.

When data are measured using an ordinal scale, the Spearman rank-order correlation is used to assess interobserver reliability. When observational data are measured on an interval or ratio scale, such as when time is the measured variable, observer reliability can be assessed using a Pearson Product-Moment Correlation Coefficient, \(r \). This was the case when researchers rated personality characteristics of individuals from information provided on their Facebook profiles. For example, coders used a scale to rate Facebook users’ level of social
anxiety after reviewing their profiles using objective criteria, such as number of interests (Fernandez et al., 2012). Correlations indicated coders agreed in their ratings of social anxiety, indicating interobserver reliability. Moreover, the observers’ ratings correlated with Facebook users’ self-reports of their social anxiety.

A correlation exists when two different measures of the same people, events, or things vary together—that is, when scores on one variable covary with scores on another variable. A correlation coefficient is a quantitative index of the degree of this covariation. When observation data are measured using interval or ratio scales, a Pearson correlation coefficient, r, may be used to obtain a measure of interobserver reliability. The correlation tells us how well the ratings of two observers agree.

The correlation coefficient indicates the direction and strength of the relationship. Direction can be either positive or negative. A positive correlation indicates that as the values for one measure increase, the values of the other measure also increase. For example, measures of smoking and lung cancer are positively correlated. A negative correlation indicates that as the values of one measure increase, the values of the second measure decrease. For instance, time spent watching television and scores on academic tests are negatively correlated. When assessing interobserver reliability, researchers seek positive correlations.

The strength of a correlation refers to the degree of covariation present. Correlations range in size from -1.00 (a perfect negative relationship) to 1.00 (a perfect positive relationship). A value of 0.0 indicates there is no relationship between the two variables. The closer a correlation coefficient is to 1.0 or -1.0, the stronger the relationship between the two variables. Note that the sign of a correlation signifies only its direction; a correlation coefficient of -0.46 indicates a stronger relationship than one that is 0.20. We suggest that measures of interobserver reliability that exceed 0.85 indicate good agreement between observers (but the higher, the better!).

In Chapter 5 we discuss the use of correlations for making predictions. In addition, Chapter 11 provides a detailed discussion of correlations, including how relationships between two variables can be described graphically using scatterplots, how Pearson Product-Moment Correlation Coefficients are computed, and how these correlations are best interpreted. If you want to become more familiar with the topic of correlation, refer to Chapter 11.

THINKING CRITICALLY ABOUT OBSERVATIONAL RESEARCH

A good observational study involves choosing how to sample behavior and events to observe, selecting the appropriate observational method, and deciding how to record and analyze observational data. Now that you know the basics of observational methods, you also need to know about potential problems that can occur. The first problem is associated with the influence of...
the observer on behavior; a second problem occurs when observers’ biases influence what behavior they choose to record. We’ll consider each of these problems in turn.

Influence of the Observer

• The problem of reactivity occurs when the presence of an observer influences the behavior being observed.
• Research participants may respond to demand characteristics in the research situation to guide their behavior.
• Methods to control reactivity include concealing the observer’s presence, adaptation (habituation, desensitization), and indirect observation (physical traces, archival records).
• Researchers must consider ethical issues when attempting to control reactivity.

Reactivity The presence of an observer can lead people to change their behavior because they know they are being observed. We first addressed this issue of reactivity in the section describing participant observation. When individuals “react” to the presence of an observer, their behavior may not represent their typical behavior. Research participants can respond in very subtle ways when they are aware that their behavior is being observed. They are sometimes apprehensive and anxious about participating in psychological research, and measures of arousal (e.g., heart rate) may change simply because an observer is present. Research participants who wear an electronic beeper that signals them to record their behavior and mood also can be expected to change their behavior (e.g., Larson, 1989). Problems of reactivity face researchers using the EAR methodology (e.g., Mehl & Holleran, 2007). Outfitted with an electronic recorder, participants are aware that their speech is being recorded at set intervals. As might be expected, some participants admit to turning off the device during intimate conversations with significant others.

Individuals often react to the presence of an observer by trying to behave in ways they think the researcher wants them to behave. Knowing they are part of a scientific investigation, individuals usually want to cooperate and be “good” participants. Research participants often try to guess what behaviors are expected, and they may use cues and other information to guide their behavior (Orne, 1962). These cues in the research situation are called demand characteristics. Orne suggests that individuals generally ask themselves the question, “What am I supposed to be doing here?” To answer this question, participants pay attention to the cues present in the setting, the research procedure, and implicit cues given by the researcher.

To the extent that participants change their behavior as they pay attention to demand characteristics, the external validity of the research is threatened. The ability to generalize the research findings (external validity) is threatened when research participants behave in a manner that is not representative of their behavior outside the research setting. In addition, interpretation of the study’s findings can be threatened because participants may unintentionally
make a research variable more effective than it actually is, or even nullify the effect of an otherwise important variable. One way to reduce the problem of demand characteristics is to limit participants’ knowledge about their role in the study or about the hypotheses of the study, that is, to provide as few “cues” as possible. You may remember, however, that withholding information from participants can raise ethical concerns, particularly concerning informed consent.

Controlling Reactivity There are several approaches that researchers use to control the problem of reactivity. Several of the observational methods discussed earlier in this chapter are designed to limit reactivity. Reactivity can be eliminated if research participants do not know that an observer is present in the setting. Disguised participant observation achieves this goal because individuals are not aware of the presence of the observer. Observers can also conceal themselves while making observations in natural settings (naturalistic observation), or they can use hidden cameras or tape recorders to make their observations (but they must be aware of ethical concerns related to privacy).

An important advantage of indirect observation, or unobtrusive methods, is that these observations are nonreactive. Researchers observe physical traces and archival records to learn about people’s past behavior. Because the individuals are no longer present in the situation and likely do not even know the physical traces or archival records are being observed by researchers, it is impossible for them to change their behavior. One researcher investigated the drinking behavior of people living in a town that was officially “dry” by counting empty liquor bottles in their trash cans (see Figure 4.5). Another researcher used the archival records kept by a library to assess the effect of the introduction of television in a community. Withdrawal of fiction titles dropped, but the demand for nonfiction was not affected (see Webb et al., 1981).

Another approach researchers use to deal with reactivity is to adapt participants to the presence of an observer. We can assume that as participants get used to an observer’s presence, they will eventually behave normally in the observer’s presence. Adaptation can be accomplished through either habituation or desensitization. In a **habituation** procedure, observers simply enter into the setting on many different occasions until the participants stop reacting to their presence (i.e., their presence becomes normal). Researchers using the EAR methodology rely on habituation to reduce reactivity (e.g., Mehl & Holleran, 2007). As the researchers noted:

> Immediately after receiving the EAR, participants went through a brief period of heightened self-awareness in which conversations about the EAR were frequent. Within 2 h of wearing the device, however, most participants habituated to the method and rarely mentioned it with others thereafter. (p. 254)

Although possible effects due to reactivity remain, the researchers argue such effects are minimal when the focus is on “mundane behaviors that could potentially be observed by other people” (p. 256). It’s likely that similar processes of habituation take place during more contemporary “reality shows,” but one must also wonder whether some of the behavior displayed on these shows occurs precisely because the individuals are on television!
Desensitization as a means of dealing with reactivity is similar to the procedures used by clinical psychologists in the behavioral treatment of phobias. In a therapy situation, an individual with a specific fear (e.g., spiders) is first exposed to the feared stimulus at a very low intensity. For example, the individual may be asked to think of things related to spiders, such as cobwebs. At the same time, the therapist helps the client to practice relaxation. Gradually the intensity of the stimulus is increased until the client can tolerate the actual feared object, for example, by holding a spider. Desensitization is often used by animal researchers to adapt animal subjects to the presence of an observer. Prior to her violent murder in Africa, Dian Fossey (1981, 1983) conducted fascinating observational studies of mountain gorillas in Rwanda. Over a period of time she moved closer and closer to the gorillas so they could adapt to her presence. She found that by imitating their movements—for instance, by munching the foliage they ate and by scratching herself—she could put the gorillas at ease. Eventually she was able to sit among the gorillas and observe them as they touched her and explored her research equipment.

Ethical Issues Whenever researchers try to control reactivity by observing individuals without their knowledge, important ethical issues arise. For instance, observing people without their consent can represent a serious invasion of privacy. Deciding what constitutes an invasion of privacy is not always easy (see Chapter 3), and must include consideration of the sensitivity of the information,
the setting where observation takes place, and the method for disseminating the information (e.g., Diener & Crandall, 1978).

Researchers admit that initially the “thorniest issue surrounding the EAR concerns confidentiality,” since nonparticipants who are within range of the microphone may not know that their speech is being recorded (Mehl et al., 2001, p. 522). This raises both legal and ethical issues. However, since the identities of nonparticipants’ voices are generally not revealed, confidentiality and anonymity are maintained. Nevertheless, this has led researchers to redesign the EAR so that the microphone is worn under the participant’s clothing and will capture only the participant’s voice (Mehl et al., 2010). It should also be mentioned that before transcripts are made, all participants are given the opportunity to listen to the recording and remove anything they find objectionable.

Recent behavioral studies using the Internet introduce new ethical dilemmas. For example, when researchers enter Internet chat rooms as disguised participant observers to find out what makes racists advocate racial violence (Glaser et al., 2002), the information they obtained could be seen as incriminating evidence without the respondents’ knowledge, much like a “sting” operation. The dilemma, of course, is that if informed consent were obtained it is very unlikely that respondents would cooperate. In this case, the IRB approved the research by agreeing with the researchers that a chat room is a “public forum,” that these topics were common to that forum, and that the researchers had appropriately established safeguards to protect respondents’ identities (e.g., by separating names or pseudonyms from comments). On the other hand, there are instances in which people have felt their privacy was violated when they learned that researchers observed their online discussions without their knowledge (see Skitka & Sargis, 2005). Although Internet message boards may be considered “public,” researchers investigating adolescent messages about self-injurious behaviors were required by their university IRB to paraphrase participants’ comments rather than use exact quotes (Whitlock et al., 2006). Behavioral research using the Internet is in its early stages, and both researchers and IRB members are still learning and applying creative problem solving for ethical dilemmas as they arise (see Buchanan & Williams, 2010; Kraut et al., 2004).

When individuals are involved in situations that are deliberately arranged by an investigator, as occurs in structured observation and field experiments, ethical problems associated with placing participants at risk may arise. Consider, for example, a field experiment in which students walking across campus were questioned about their attitudes toward racial harassment (Blanchard, Crandall, Brigham, & Vaughn, 1994). In one condition of the experiment, a confederate, posing as a student, condemned racist acts and in a second condition, the confederate condoned racist acts. Individual participants were then asked about their attitudes. The results of the study indicated that the views expressed by the confederate caused participants to be more likely to express similar statements compared to a third condition, in which the confederate didn’t express any opinion. We can ask, were these participants “at risk”? Did the goals of the study, which were to show how outspoken people can influence interracial social settings, outweigh any risks involved in the study? Although participants were “debriefed immediately” in this study, is that sufficient to
address any concerns about how they may have behaved when confronted with racist opinions? Did debriefing restore their confidence in a science that seeks knowledge through deception? Any attempt to answer these questions highlights the difficulty of ethical decision making.

Finally, we can turn to unobtrusive measures such as physical traces and archival data to address another ethical issue: scientists’ ethical obligation to improve individual and societal conditions. There are many serious issues that confront us today, including violence, race relations, suicide, domestic conflict, and many other social issues, for which research involving direct observation may be difficult to justify when considering a risk/benefit ratio. That is, some research methods simply may involve too great a risk to research participants. Research involving the use of physical traces and archival data can be carried out on these important problems with less risk. Thus, unobtrusive observational methods represent an important tool in the multimethod approach for investigating important social issues.

Observer Bias

- Observer bias occurs when researchers’ biases determine which behaviors they choose to observe, and when observers’ expectations about behavior lead to systematic errors in identifying and recording behavior.
- Expectancy effects can occur when observers are aware of hypotheses for the outcome of a study or the outcome of previous studies.
- The first step in controlling observer bias is to recognize that it may be present.
- Observer bias may be reduced by keeping observers unaware (“blind”) of the goals and hypotheses of the study.

As an example of disguised participant observation, we described Rosenhan’s (1973) classic study in which observers were admitted to psychiatric hospitals. Once in the hospital they observed and recorded behavior of hospital staff. Rosenhan’s research identified a serious bias on the part of the staff. Once the observers (called “pseudopatients”) were labeled schizophrenic, staff members interpreted their behavior solely according to this label. Behaviors that otherwise might be considered normal were interpreted by the staff as evidence of the pseudopatients’ illness. For instance, the pseudopatients quickly learned they could record their observations openly—no one paid much attention to what they were doing. When Rosenhan later checked the medical records for the pseudopatients, he found that staff members had cited the note taking as a symptom of their illness. (Don’t worry—taking notes is not a sign of mental illness!) Because staff members interpreted the pseudopatients’ behavior in terms of the schizophrenic label, their “sanity” was not detected. This example clearly illustrates the danger of **observer bias**, the systematic errors in observation that result from an observer’s expectations. In this case, the staff members demonstrated observer bias.

Expectancy Effects

In many scientific studies the observer has some expectations about what behavior should be like in a particular situation or following a specific psychological treatment. When researchers design a study they
review the previously published research literature to help them develop their hypotheses. This knowledge can lead researchers to form expectancies about what should occur in a research situation; in fact, hypotheses are predictions about what is expected to happen. However, expectancies can be a source of observer bias—expectancy effects—if they lead to systematic errors in observation (Rosenthal, 1966, 1976). A classic study documented expectancy effects (Cordaro & Ison, 1963). College student observers recorded the number of head turns and body contractions made by flatworms. Observers in one group were led to expect a high rate of movement, whereas observers in a second group expected a low rate. The two groups of flatworms were essentially identical; however, results showed that when observers expected to see lots of movement, they recorded twice as many head turns and three times as many body contractions compared to observers who expected a low rate of movement. Apparently, the students systematically interpreted the actions of the worms differently depending on what they expected to observe.

Other Biases An observer’s expectancies regarding the outcome of a study may not be the only source of observer bias. You might think that using automated equipment such as video cameras would eliminate observer bias. Although automation reduces the opportunity for bias, it does not necessarily eliminate it. Consider the fact that, in order to record behavior on film, the researcher must determine the angle, location, and time of filming. To the extent that these aspects of the study are influenced by the researcher’s personal biases, such decisions can introduce systematic errors into the results. In addition, the use of automated equipment generally only postpones the process of classification and interpretation, and it is perfectly possible for the effects of observer bias to be introduced when records are coded and analyzed.

Controlling Observer Bias Observer bias is difficult to eliminate, but it can be reduced in several ways. As we mentioned, the use of automatic recording equipment can help, although the potential for bias is still present. Probably the most important factor in dealing with observer bias is the awareness that it might be present. That is, an observer who knows about this bias will be more likely to take steps to reduce its effect. One important way researchers reduce observer bias is to limit the information provided to observers. When observers and coders do not know the hypotheses of a study they cannot form expectancies about behavior. In a manner of speaking, observers can be kept “blind” regarding certain aspects of the study. Observers are blind when they do not know the reasons for the observations or the goals of the study. For example, when trained coders analyzed the videotapes of interactions between mothers and children from maltreating and nonmaltreating families, they were not aware of which type of family they were observing (Valentino et al., 2006). As you might imagine, observers’ expectancies regarding maltreating families might influence their interpretation of behaviors. Using blind observers greatly reduces the possibility of introducing systematic errors due to observer expectancies.
Researchers rarely observe all behavior that occurs. Consequently, researchers must use some form of behavior sampling such as time and situation sampling. An important goal of sampling is to achieve a representative sample of behavior. External validity refers to the extent to which observations from a study can be generalized to describe different populations, settings, and conditions; external validity is enhanced when a representative sample is obtained. Observational methods can be classified as direct observation or indirect observation. Direct observation in a natural setting without intervention is called naturalistic observation. Observation with intervention can take the form of participant observation, structured observation, and field experiments. An important advantage of indirect observational methods is that they are nonreactive. Reactivity occurs when people change their behavior because they know they are being observed. Indirect, or unobtrusive, observations can be obtained by examining physical traces and archival records. Physical traces include use traces (natural or controlled) and products. Archival data are the records of the activities of individuals, institutions, governments, and other groups. Problems associated with physical traces include potential biases in how traces accumulate or survive over time, and problems with archival data include selective deposit, selective survival, and the potential for spurious relationships in the data.

In observational studies, behavior can be recorded either with a comprehensive description of behavior or by recording only certain predefined units of behavior. Narrative records are used to provide comprehensive descriptions of behavior, and checklists typically are used when researchers are interested in whether a specific behavior has occurred (and under what conditions). Frequency, duration, and ratings of behavior are common variables examined in observational studies. The content analysis of narrative and archival records involves coding as one step in data reduction. How quantitative data are analyzed depends on the measurement scale used. The four measurement scales are nominal, ordinal, interval, and ratio. When a nominal scale is used to record behavior (e.g., present, absent), data are summarized using proportions or percentages to indicate relative frequency of behavior. When describing ordinal data, researchers often describe results according to the percentage of people who ranked items first among a set of items. When behavior is measured using interval and ratio scales, data are summarized using the mean and standard deviation. It is essential to provide measures of observer reliability when reporting the results of an observational study. Depending on the level of measurement used, either a percentage agreement measure or a correlation coefficient can be used to assess reliability.

Possible problems due to reactivity or observer bias must be controlled in any observational study. One form of reactivity is when participants pay attention to the demand characteristics of a research situation to guide their behavior. Observational methods in which the participants are not aware they are being observed (e.g., disguised participant observation, unobtrusive methods) limit reactivity; in other situations, participants may adapt to the presence of an observer. Observer bias occurs when researchers’ biases determine which
behaviors they choose to observe and when observers’ expectations about behavior lead to systematic errors in identifying and recording behavior (expectancy effects). Important steps in reducing observer bias are to be aware of its presence and to keep observers blind regarding the goals and hypotheses of the study. Ethical issues must be considered prior to beginning any observational study. Depending on the nature of the observations, ethical issues might include deception, privacy, informed consent, and the risk/benefit ratio.

KEY CONCEPTS

- external validity 94
- time sampling 94
- situation sampling 96
- naturalistic observation 99
- participant observation 101
- reactivity 101
- structured observation 103
- field experiment 105
- unobtrusive measures 106
- physical traces 107
- archival records 110
- selective deposit 111
- selective survival 112
- narrative records 113
- measurement scales 115
- data reduction 119
- coding 119
- content analysis 119
- interobserver reliability 123
- correlation coefficient 124
- demand characteristics 125
- observer bias 129

** REVIEW QUESTIONS**

1. Describe the types of sampling researchers use in observational studies and what the proper use of sampling is intended to accomplish.
2. Explain the difference between direct and indirect observational methods and how the degree of intervention can be used to distinguish direct observational methods.
3. Describe a research situation in which naturalistic observation can be useful when ethical considerations prevent researchers from intervening to study behavior.
4. Explain why reactivity is a problem in observational studies.
5. What ethical issues are raised when a participant observation study is conducted online?
6. Explain why physical traces and archival data are attractive alternatives to direct observation.
7. Describe the different types of physical-trace measures available to psychologists and the ways in which these measures may be biased.
8. Explain how archival data may be used to test the effect of a natural treatment.
9. Explain how selective deposit, selective survival, and spurious relationships may bias the interpretation of archival records.
10. Give an example using each of the four measurement scales to describe how a researcher could measure eye contact between pairs of people in conversation with each other.
11. Describe how data reduction and coding are used in qualitative analyses of narrative records and archival data.
12. What are the most common descriptive measures (a) when events are measured on a nominal scale, (b) when items are ranked using an ordinal scale, and (c) when behavior is recorded on at least an interval scale.
13. Describe the procedures researchers can use to increase interobserver reliability.
14 Identify the measurement scales that require a correlation coefficient to assess interobserver reliability, and explain what a negative correlation would indicate in this situation.

15 Describe two ways in which observer bias (expectancy effects) can occur in psychological research.

16 Explain how researchers may reduce observer bias.

CHALLENGE QUESTIONS

1 Students in a developmental psychology lab course conducted an observational study of parent–infant interactions in the home. When they first entered the home on each of the 4 days they observed a given family, they greeted both the parents and the infant (and any other children at home). They instructed the family to follow its daily routine, and they asked a series of questions about the activities of that day to determine whether it was a “normal” day or whether anything unusual had happened. The students tried to make the family feel comfortable, but they also tried to minimize their interactions with the family and with each other. For any given 2-hour observation period there were always two student observers present in the home, and the two observers recorded their notes independently of each other. Each of six pairs of students was randomly assigned to observe two of the 12 families who volunteered to serve in the study. The same pair of observers always observed a given family for the entire 8 hours of observation for that family. The observers used rating scales with clearly defined labels to record behaviors on a number of different dimensions, such as mutual warmth and affection of the parent–infant interaction.

A Cite two specific procedures used by the students to ensure the reliability of their findings.

B Cite one possible threat to the external validity of the findings of this study; once again, cite a specific example from the description provided.

C Cite one specific aspect of their procedure that indicated that the students were sensitive to the possibility that their measurements might be reactive. What other methods might they have used to deal with this problem of reactivity?

2 An observational study was done to assess the effects of environmental influences on drinking by college students in a university-sponsored pub. Eighty-two students over the age of 21 were observed. The observers used a checklist to record whether the participant was male or female and whether the participant was with one other person or was in a group of two or more other people. Each observation session was always from 3 P.M. to 1 A.M., and observations were made Monday through Saturday. The observations were made over a 3-month period. Two observers were always present during any observation session. Each participant was observed for up to 1 hour from the time he or she ordered the first beer. The data were summarized in terms of the number of beers drunk per hour. The results showed that men drank more and men drank faster than did women. Men drank faster when with other men, and women also drank faster with men present. Both men and women drank more in groups than when with one other person. These results indicate that the environment within which drinking occurs plays an important role in the nature and extent of that drinking.

A Identify the observational method being used in this study, and explain why you decided on the observational method you chose.

B Identify the independent and dependent variables in this study, and describe the operational definition of each level of the independent variable.

C How could the researchers control for reactivity in this study? What ethical concerns might arise from their approach?

D Identify one aspect of the procedures in this study that would likely increase the reliability of the observations.

E Identify one aspect of the procedures in this study that would likely limit the external validity of the findings of this study.

3 An American psychology graduate student, raised in Germany until age 16, wishes to explore how Germans and Americans use the social networking site, Facebook. She speaks fluent German and has many social contacts both in Germany and the United States. Specifically, the student asks: What are the differences in the way that Germans and Americans portray themselves on Facebook? She contacts network friends in both countries and explains her project. She also requests that her friends describe the project to other Facebook users in their country and help recruit people for her study. After a few weeks she finds that she has more than 500 Facebook users willing to participate, with the numbers from each country
PART II: Descriptive Methods

Answer to Stretching Exercise

1 Naturalistic observation was used. Behavior was observed in a natural setting with no attempt to intervene.

2 The sampling procedure can be described as a combination of event sampling (meals) and time sampling, with intervals scheduled systematically (four 15-minute intervals in an hour over a 5-day period).

3 When only one person was observed using an electronic device, the proportion of men (40/50 = .80) was greater than the proportion of women (10/50 = .20) using the device. The results appear to support the graduate student’s conclusion.

4 It is unclear how observers selected couples for observation. For example, they may have paid more attention to couples in which an electronic device was present on the table. Some form of random or systematic selection would be preferable to having observers simply select whoever they wished to observe. Also, the researchers did not collect data regarding the type or duration of the interruption. Answering a phone call and disconnecting quickly might be coded differently than playing Angry Birds for 10 minutes. In addition, a measure of interobserver agreement could be obtained by having research assistants observe the same couples and comparing their observations.

Answer to Challenge Question 1

A The students’ procedures that enhanced reliability were as follows: observing each family for 8 hours, using two independent observers, and using clearly defined rating scales to provide operational definitions of behavior.

B One possible threat to the external validity of the findings was that the 12 families volunteered for the study and such families may differ from typical families.

C The students’ efforts to minimize interactions with the family and with each other suggests that they were sensitive to the problem of reactivity. By being observed for 8 hours, family members may have habituated to the presence of observers. Another method would have been desensitization, in which the observers gradually increase their presence.
CHAPTER FIVE

Survey Research

CHAPTER OUTLINE

OVERVIEW
USES OF SURVEYS
CHARACTERISTICS OF SURVEYS
SAMPLING IN SURVEY RESEARCH
Basic Terms of Sampling
Approaches to Sampling
SURVEY METHODS
Mail Surveys
Personal Interviews
Telephone Interviews
Internet Surveys
SURVEY-RESEARCH DESIGNS
Cross-Sectional Design
Successive Independent Samples Design
Longitudinal Design
QUESTIONNAIRES
Questionnaires as Instruments
Reliability and Validity of Self-Report Measures
Constructing a Questionnaire
THINKING CRITICALLY ABOUT SURVEY RESEARCH
Correspondence Between Reported and Actual Behavior
Correlation and Causality
SUMMARY
Overview

Are Americans romantic? Are they romantic compared to the French, who are renowned for their passion for passion? These were some of the questions asked in a 2009 survey of American romance—a survey conducted specifically to compare findings to a French survey regarding love and relationships (Schwartz, 2010).

Survey results indicated that Americans are just as “in love” as the French, even more so when considering older respondents. For individuals over age 65, 63% of Americans described themselves as “in love,” compared to 46% of French in that age group. When do Americans and French respondents differ? When asked about sex. One question asked, “can true love exist without a radiant sex life?” A majority of Americans (77%) ages 18–65+ claimed this was true, whereas only 35% of French claimed true love can exist without such sex.

Based on these results, we can describe people’s responses about being in love. Also, we can predict responses about being in love based on age and nationality (French or American). The findings also allow us to predict, knowing whether someone is American or French, what he or she may say about true love and sex. But does being French or American cause these attitudes? That is another matter entirely.

Correlational research provides a basis for making predictions. Relationships among naturally occurring variables are assessed with the goal of identifying predictive relationships. As we discussed in Chapter 4, a correlation coefficient is a quantitative index of the direction and magnitude of a predictive relationship. We will discuss correlational research in the context of survey methodology later in this chapter.

Surveys typically are conducted with samples of people. In this chapter we first introduce the basic logic and techniques of sampling—the process of selecting a subset of a population to represent the population as a whole. You will then learn about the advantages and disadvantages of various survey-research methods and survey-research designs. The primary instrument of survey research is the questionnaire, and so we describe the basics of constructing a good questionnaire. We also discuss an important question that needs to be addressed in survey research, “Do people really do what they say they do?” We conclude the chapter by critically examining a broader question, “Just what can we conclude about causality when a correlation exists between two variables?”

Uses of Surveys

- Survey research is used to assess people’s thoughts, opinions, and feelings.
- Surveys can be specific and limited in scope or more global in their goals.
- The best way to determine whether results of a survey are biased is to examine the survey procedures and analyses.

We discussed in Chapter 4 how psychologists use observational methods to infer what people must have been thinking or feeling to have behaved in a certain way. Survey research is designed to deal more directly with the nature of people’s thoughts, opinions, and feelings. On the surface, survey research is
deceptively simple. If you want to know what people are thinking, ask them! Similarly, if you want to know what people are doing, observe them! As we have seen, however, when we hope to infer general principles of behavior, our observations must be more sophisticated than our everyday, casual observations. So, too, survey research requires more than simply asking people questions.

Social scientists, such as political scientists, psychologists, and sociologists, use surveys in their research for a variety of reasons, both theoretical and applied. Surveys also are used to meet the more pragmatic needs of the media, political candidates, public health officials, professional organizations, and advertising and marketing directors. Surveys often are used to promote political or social agendas, as in the public health initiative to eliminate depictions of smoking in movies. Heatherton and Sargent (2009) analyzed survey data and found that as exposure to smoking in movies increases among adolescents, the likelihood of trying smoking or becoming smokers increases, especially among adolescents typically regarded as having low risk for smoking (e.g., nonsmoking parents).

In addition, the scope and purpose of surveys can be limited and specific, or they can be more global. In a survey study with limited scope, individuals’ ratings of the extent to which they express gratitude in a close relationship were related to perceptions of the strength of that relationship (Lambert et al., 2010). A survey with greater scope used both online interviews and e-mail exchanges to examine the attitudes of online gamers playing massively multiplayer online role-playing games (MMORPGs; see Hussain & Griffiths, 2009). This qualitative study gathered responses from online gamers from 11 different countries. Surveys with even greater scope include those seeking a comprehensive summary of global happiness (e.g., Ingelhart, Foa, Peterson, & Welzel, 2008).

One of the ways that surveys can be used deserves mention because it raises ethical concerns. An ethical dilemma arises when sponsors of research have vested interests in the survey results. Crossen (1994) highlighted this by stating that “more and more of the information we use to buy, elect, advise, acquit, and heal has been created not to expand our knowledge but to sell a product or advance a cause” (p. 14). Crossen cites an example of a survey sponsored by a manufacturer of cell phones showing that 70% of respondents (all of whom used cell phones) agreed that people who use cell telephones are more successful in business than those who do not use cell phones.

Is it reasonable to conclude that survey results are biased anytime the outcome of the survey is favorable for the sponsoring agency? Answers to ethical questions are rarely simple, and the answer to this one is not simple. High-quality and ethical research can be done when the sponsor has an interest in the outcome. Knowing the sponsor of the research is important when evaluating survey results but is not sufficient for judging whether the study is biased. It is much more important to know whether a biased sample has been used, or whether the wording of questions has been slanted, or whether the data have been selectively analyzed or reported. Any of these aspects of survey research can bias the results, and unethical researchers can use these techniques to make the results “turn out right.” The best protection against unethical researchers and poor-quality research is to examine carefully the procedures and analyses used in the survey research.
Characteristics of Surveys

- Survey research involves selecting a sample (or samples) and using a predetermined set of questions.

 All properly conducted surveys share common characteristics that make surveys an excellent method for describing people’s attitudes and opinions. First, surveys generally involve sampling, which is a characteristic of nearly all behavioral research. This concept was introduced in our discussion of time and situation sampling in observational research in Chapter 4. We will discuss sampling as it is used in survey research in the next section. Surveys also are characterized by their use of a set of predetermined questions for all respondents. Oral, written, or computer-entered responses to these questions constitute the principal data obtained in a survey. By using the same phrasing and ordering of questions, it is possible to summarize the views of all respondents succinctly.

 When a representative sample of people is asked the same set of questions, we can describe the attitudes of the population from which the sample was drawn. Furthermore, when the same questions are used, we can compare the attitudes of different populations or look for changes in attitudes over time. Surveys are a powerful tool in researchers’ toolbox. In the remainder of this chapter, we highlight the methods that make surveys an effective strategy for examining people’s thoughts, opinions, and feelings.

Sampling in Survey Research

- Careful selection of a survey sample allows researchers to generalize findings from the sample to the population.

 Assume you’ve decided your research question is best answered using a survey, and you’ve determined the population of interest for your survey. The next step is to decide who should respond to your survey questions. This involves carefully selecting a sample of respondents to represent the population. Whether describing a national population or a much smaller one (e.g., the students of one university), the procedures for obtaining a representative sample are the same.

Basic Terms of Sampling

- The identification and selection of elements that will make up the sample is at the heart of all sampling techniques; the sample is chosen from the sampling frame, or list of all members of the population of interest.

- Researchers are not interested simply in the responses of those surveyed; instead, they seek to describe the larger population from which the sample was drawn.

- The ability to generalize from a sample to the population depends critically on the representativeness of the sample.

- A biased sample is one in which the characteristics of the sample are systematically different from the characteristics of the population.
Selection bias occurs when the procedures used to select a sample result in the overrepresentation or underrepresentation of some segment(s) of the population.

As we begin to talk about sampling techniques, we need to be clear about the definitions of four terms: population, sampling frame, sample, and element. The relationships among the four critical sampling terms are summarized in Figure 5.1. A population is the set of all cases of interest. For example, if you are interested in the attitudes of students on your campus toward computer services, your population is all students on your campus. Contacting everyone in a large population is often practically impossible. Therefore, researchers usually select a subset of the population to represent the population as a whole.

We need to develop a specific list of the members of the population in order to select a subset of that population. This specific list is called a sampling frame and is, in a sense, an operational definition of the population of interest. In a survey of students’ attitudes toward computer services, the sampling frame might be a list obtained from the registrar’s office of all currently enrolled students. The extent to which the sampling frame truly reflects the population of interest determines the adequacy of the sample we ultimately select. The list provided by the registrar should provide a good sampling frame, but some students might be excluded, such as students who registered late.
The subset of the population actually drawn from the sampling frame is called the **sample**. We might select 100 students from the registrar’s list to serve as the sample for our computer survey. How closely the attitudes of this sample of students will represent all students’ attitudes depends critically on how the sample is selected. Each member of the population is called an **element**. The identification and selection of elements that will make up the sample are at the heart of all sampling techniques.

It is important to emphasize that samples are of little or no interest in themselves. A new computer facility is not going to be built for the sole use of the 100 students surveyed. Similarly, the social psychologist is not interested solely in the racial attitudes of the 50 people he surveyed, nor is the marketing director interested only in the preferences of the 200 consumers she surveyed. **Populations, not samples, are of primary interest.** The “power” of samples to describe the larger population is based on the assumption that survey responses in a sample can be applied to the population from which the sample was drawn.

The ability to generalize from a sample to the population depends critically on the **representativeness** of the sample. Clearly, individuals in a population differ in many ways, and populations differ from each other. For example, one population might be 60% female and 40% male, whereas in another population the distribution might be 75% female and 25% male. A **sample is representative of the population to the extent that it exhibits the same distribution of characteristics as the population.** If a representative sample of 200 adults has 80 men and 120 women, which of the above-mentioned populations does it represent?

The major threat to representativeness is bias. A **biased sample** is one in which the distribution of characteristics in the sample is systematically different from the target population. A sample of 100 adults that included 80 women and 20 men would likely be biased if the population were 60% female and 40% male. In this case, women would be overrepresented and men would be underrepresented in the sample. There are two sources of bias in samples: selection bias and response rate bias. **Selection bias** occurs when the procedures used to select the sample result in the overrepresentation of some segment of the population or, conversely, in the exclusion or underrepresentation of a significant segment. We will describe problems associated with response rate bias in the next section, “Survey Methods.”

What constitutes a representative sample depends on the population of interest. For example, if a university wants to know student drivers’ opinions about on-campus parking, then the target population is college students who bring cars to campus (not college students in general). An unbiased sample would, in this case, be one that is representative of the population of students who have cars on campus. Stretching Exercise I asks you to identify examples of biased samples due to selection bias.

Approaches to Sampling

- Two approaches to selecting a survey sample are probability sampling and nonprobability sampling.
- Probability sampling is the method of choice for obtaining a representative sample.
In simple random sampling, each element of the population has an equal chance of being included in the sample; in stratified random sampling, the population is divided into subpopulations (strata), and random samples are drawn from the strata.

Nonprobability sampling (such as convenience sampling) does not guarantee that every element in the population has an equal chance of being included in the sample.

There are two basic approaches to sampling: probability sampling and nonprobability sampling. Suppose we wish to find out what students at a small college think about campus security. How safe do they feel while on campus? Obviously, some thought will have to be given to the wording of the questions. However, for now, consider two approaches a researcher might take to obtain a sample of students for her survey. In the first, from the registrar’s list of registered students she randomly selects 50 students to participate in the survey. In the second approach, she visits the school cafeteria at lunchtime for five days until she finds 50 students to participate.

We can describe the first approach as probability sampling. By selecting students randomly from the registrar’s list of students, each person (element) on the list has an equal chance of being included in the sample. The second approach uses nonprobability sampling. By choosing students for her sample who happen to be eating lunch in the cafeteria, we have no way to guarantee that each student (element) on the registrar’s list has some chance of being selected, and hence no way to estimate the probability of each element’s being included in the sample.
Many students may not choose to eat lunch in the cafeteria, others may have classes at that time, or commute from home and eat elsewhere. Probability sampling is far superior to nonprobability sampling in ensuring that selected samples represent the population. The 50 students selected randomly from the registrar’s list are more likely to be a representative sample of students at the college than those who happen to be eating lunch in the cafeteria.

Probability Sampling The distinguishing characteristic of probability sampling is that the researcher can specify, for each element of the population, the probability that it will be included in the sample. Two common types of probability sampling are simple random sampling and stratified random sampling. Simple random sampling is the basic technique of probability sampling. The most common definition of simple random sampling is that every element has an equal chance of being included in the sample. The procedures for simple random sampling are outlined in Box 5.1.

One critical decision that must be made in selecting a random sample is how large it should be. For now, we will simply note that the size of a random sample needed to represent a population depends on the degree of variability in the population. For example, college students in Ivy League schools represent a more homogeneous population than college students in all U.S. colleges in terms of their academic abilities. At one extreme, the most homogeneous population would be one in which all members of the population are identical. A sample of one element would be representative of this population regardless of the size of the population. At the other extreme, the most heterogeneous
population would be one in which each member was completely different from all other members on all characteristics. No sample, regardless of its size, could be representative of this population. Every individual would have to be included to describe such a heterogeneous population. In practice, the populations with which survey researchers work typically fall somewhere between these two extremes.

The representativeness of a sample can often be improved by using stratified random sampling. In stratified random sampling, the population is divided into subpopulations called strata (singular: stratum) and random samples are drawn from each of these strata. There are two general ways to determine how many elements should be drawn from each stratum. One way is to draw equal-sized samples from each stratum. The second way is to draw elements for the sample on a proportional basis. Consider a population of undergraduate students made up of 30% freshmen, 30% sophomores, 20% juniors, and 20% seniors (class years are the strata). A stratified random sample of 200 students drawn from this population would include 60 freshmen, 60 sophomores, 40 juniors, and 40 seniors. In contrast, drawing equal-sized samples from each stratum would result in 50 students for each class year. Only the stratified sample on a proportional basis would be representative.

In addition to its potential for increasing the representativeness of samples, stratified random sampling is useful when you want to describe specific portions of the population. For example, a simple random sample of 100 students would be sufficient to survey students’ attitudes on a campus of 2,000 students. Suppose, however, your sample included only 2 of the 40 chemistry majors on campus, and you wish to describe the views of students according to different majors. Although this accurately reflects the proportion of chemistry majors in the campus population, it would be risky to use the views of only 2 chemistry students to represent all 40 chemistry majors (2 is too few). In this case (and more generally when a stratum is small in number), you could sample more chemistry majors to describe their views better. We can’t say precisely how many to sample because, as we learned earlier, the sample size needed to represent a population depends on the degree of variability in the population.

Key Concept

Two student researchers have been asked to do a survey to determine the attitudes of students toward fraternities and sororities on campus. There are 3,200 students in the school. About 25% of the students belong to the Greek organizations and 75% do not. The two student researchers disagree about what sampling plan is best for the study. One researcher thinks they should draw a stratified random sample of 200 students: 100 from among those students who belong to Greek organizations and 100 from among the independent students. The second researcher thinks they should draw one simple random sample of 100 students from the campus as a whole.

1 Comment critically on these two sampling plans in terms of their representativeness and the likelihood that they would measure reliably the views of students who belong to Greek organizations.
2 Develop your own sampling plan if you decide that neither of the ones proposed so far is optimal.

STRETCHING EXERCISE II
Nonprobability Sampling The most common form of nonprobability sampling is convenience sampling. *Convenience sampling* involves selecting respondents primarily on the basis of their availability and willingness to respond. For example, newspapers often publish the comments of “the person on the street.” Their comments may make interesting reading, but their opinions likely do not represent those of the wider community. This lack of representativeness arises because convenience sampling is nonprobability sampling, and we can’t be sure that every person in the community had a chance to be included in the sample. Convenience sampling also is involved when people respond to surveys in magazines because the magazine has to be available (and purchased), and people must be willing to send in their responses. The “participant pool” that is tapped by many psychologists at colleges and universities is a convenience sample typically comprised of students registered for the introductory psychology course.

Crossen (1994) describes the drawbacks of another variation of convenience sampling, call-in surveys. Call-in surveys are used by TV and radio shows to poll the views of their audience. Those who happen to be “tuned in” and who are willing to call (and sometimes to pay the charge for calling a 900 number) make up the sample for these call-in surveys. People who make calls in response to a call-in request differ from the general population not only because they are part of the particular show’s audience, but because they are motivated enough to make a call. Similarly, online computer users who respond to a “pop up” survey question will differ from those who choose not to respond (or are not regular computer users).

A prime-time TV news show once conducted a call-in survey with a question concerning whether the United Nations (UN) headquarters should remain in the United States (Crossen, 1994). It turns out that another survey research study involving about 500 randomly selected respondents also asked the same question. Of the 186,000 callers who responded, a solid majority (67%) wanted the UN out of the United States. Of the 500 respondents to the survey research study, a clear majority (72%) wanted the UN to stay in the United States. How could these two surveys yield such different—even opposite—results? Should we put more confidence in the results of the call-in survey because of the massive sample size? Absolutely not! A large convenience sample is just as likely to be an unrepresentative sample as is any other convenience sample. As a general rule, you should consider that convenience sampling will result in a biased sample unless you have strong evidence confirming the representativeness of the sample.

Survey Methods

- Four methods for obtaining survey data are mail surveys, personal interviews, telephone interviews, and Internet surveys.

Selecting the sample is only one of several important decisions to make when doing survey research. In some cases, the survey method is straightforward because the sample of respondents is readily available in a particular situation. A classroom of students may be asked to complete a questionnaire, or members
of a religious community may be asked to respond to a checklist of items about worship services. These situation-specific surveys most often use paper-and-pencil measures, with the sample comprising whoever is present at the time of the survey. Other survey methods are not limited to a particular situation or setting, and may use procedures to sample from the population of potential respondents. You also need to decide how you will obtain information from the respondents. Four general methods for collecting survey data include mail surveys, personal interviews, telephone interviews, and Internet surveys. As is often true when doing research, there is no one best survey method for all circumstances. Each survey method has its own advantages and disadvantages. The challenge you face is to select the method that best fits your research question.

Mail Surveys

- Although mail surveys are quick and convenient, there may be a problem with the response rate when individuals fail to complete and return the survey.
- Due to problems with the response rate, the final sample for a mail survey may not represent the population.

Mail surveys are used to distribute self-administered questionnaires that respondents fill out on their own. One advantage of mail surveys is that they usually can be completed relatively quickly. Because they are self-administered, mail surveys also avoid the problems due to interviewer bias (to be defined in the next section). Among the four survey methods, mail surveys are the best for dealing with highly personal or embarrassing topics, especially when anonymity of respondents is preserved.

Unfortunately, there are many disadvantages to mail surveys. One drawback can be the cost of copying and mailing. Also, because respondents will not be able to ask questions, the questionnaire used in the survey must be completely self-explanatory. Another less serious disadvantage is that the researcher has little control over the order in which the respondent answers the questions. The order of questions may affect how respondents answer certain questions. Perhaps the most serious problem, however, with mail surveys is a low response rate that can result in response rate bias.

Response rate refers to the percentage of people who complete the survey. For example, if 30 of 100 people sampled complete the survey, the response rate is 30%. A low response rate indicates there could be a **response rate bias** that threatens the representativeness of a sample. There are many reasons why this occurs. For example, respondents with literacy problems, low educational background, or vision problems may not complete the survey; therefore, people with these characteristics may not be represented well in the final sample of respondents. Often, people randomly selected for a sample are too busy or not interested enough in the study to return a completed questionnaire. Low response rate (i.e., failure to complete and return the survey) is the major factor leading to samples that do not represent the population of interest, resulting in a response rate bias. Thus, a carefully selected probability sample may become
a nonprobability sample—a convenience sample in which individuals’ availability and willingness determine whether they complete the survey.

Unless the return rate is 100%, the potential for response rate bias exists regardless of how carefully the initial sample was selected. However, a low response rate does not automatically indicate the sample does not represent the population. The researcher must demonstrate the extent to which the final sample of respondents who returned the survey is representative of the population, and that no segment of the population is overrepresented or underrepresented.

The typical return rate for mail surveys is only around 30%. There are things you can do, however, to increase the return rate. Return rates generally will be higher when

— the questionnaire has a “personal touch” (e.g., respondents are addressed by name and not simply “resident” or “student”);
— responding requires minimal effort from the respondent;
— the topic of the survey is of intrinsic interest to the respondent;
— the respondent identifies in some way with the organization or researcher sponsoring the survey.

Personal Interviews

- Although costly, personal interviews allow researchers to gain more control over how the survey is administered.
- Interviewer bias occurs when survey responses are recorded inaccurately or when interviewers guide individuals’ responses.

When personal interviews are used to collect survey data, respondents are usually contacted in their homes or in a shopping mall, and trained interviewers administer the questionnaire. The personal interview allows greater flexibility in asking questions than does the mail survey. During an interview the respondent can obtain clarification when questions are unclear, and the trained interviewer can follow up incomplete or ambiguous answers to open-ended questions. The interviewer controls the order of questions and can ensure that all respondents complete the questions in the same order. Traditionally, the response rate to personal interviews has been higher than that for mail surveys.

The advantages of using personal interviews are impressive, but there are also a few disadvantages. Increasing fear of urban crime and an increasing number of households with no one home during the day have reduced the attractiveness of using personal interviews in the home. A significant disadvantage of conducting personal interviews is the cost. The use of trained interviewers is expensive in terms of both money and time. Perhaps the most critical disadvantage of personal interviews involves the potential for interviewer bias. The interviewer should be a neutral medium through which questions and answers are transmitted. **Interviewer bias** occurs when the interviewer records only selected portions of the respondents’ answers or tries to adjust the wording of a question to “fit” the respondent. For example, suppose a respondent in a survey about television states, “The biggest problem with TV shows is too much
violence.” Interviewer bias would occur if the interviewer writes down “TV violence” instead of the respondent’s full response. In a follow-up question, interview bias also would occur if the interviewer asked, “By violence, do you mean murders and rapes?” A more neutral probe would allow the respondent to describe what he or she means by asking, “Could you elaborate on what you mean by violence?”

The best protection against interviewer bias is to employ highly motivated, well-paid interviewers who are trained to follow question wording exactly, to record responses accurately, and to use follow-up questions judiciously. Interviewers should also be given a detailed list of instructions about how difficult or confusing situations are to be handled. Finally, interviewers should be closely supervised by the director of the survey project.

Computer technology makes it possible to use a hybrid of a self-administered survey and a personal interview. A person can listen to computer-recorded questions read by an interviewer and then respond to the questions on the computer. With this technology each respondent literally hears the questions read by the same interviewer in the same way, thereby reducing the risk of interviewer bias. This technology also allows respondents to answer very personal questions in relative privacy (Rasinski, Willis, Baldwin, Yeh, & Lee, 1999).

Telephone Interviews

- Despite some disadvantages, telephone interviews are used frequently for brief surveys.

The expense associated with personal interviews and difficulties supervising interviewers have led survey researchers to turn to telephone or Internet surveys. The random-digit dialing technique permits researchers to contact efficiently a generally representative sample of U.S. telephone owners. Telephone interviewing also provides better access to dangerous neighborhoods, locked buildings, and respondents available only during evening hours (have you ever been asked to complete a telephone survey during dinner?). Interviews can be completed more quickly when contacts are made by phone, and interviewers can be better supervised when all interviews are conducted from one location (Figure 5.2).

The telephone survey, like the other survey methods, is not without its drawbacks. A possible selection bias exists when respondents are limited to those who have telephones and the problem of interviewer bias remains. There is a limit to how long respondents are willing to stay on the phone, and individuals may respond differently when talking to a “faceless voice” than they would to a personal interviewer. That many people have abandoned landlines and use only cell phones adds to potential variability in responses due to the variety of settings where people may be located when responding to the survey. In addition, one may assume that individuals from higher socioeconomic groups are more likely to have multiple phone numbers and hence might be overrepresented in a survey based on random-digit dialing. Hippler and Schwarz (1987) suggest that people take less time to form judgments during phone interviews and may have difficulty remembering the response options offered by the interviewer. Moreover, extensive use of phone solicitation for selling products and requesting
contributions has led many people to be less willing to be interviewed. Options that allow for screening calls and voice mail have made it easier for people to avoid unwanted calls. In spite of these limitations and perhaps others you can think of, telephone interviews are frequently used for brief surveys.

Internet Surveys

- The Internet offers several advantages for survey research because it is an efficient, low-cost method for obtaining survey responses from large, potentially diverse and underrepresented samples.
- Disadvantages associated with Internet survey research include the potential for response rate bias and selection bias, and lack of control over the research environment.

Surveys were among the earliest Internet-based behavioral studies. Participants complete a questionnaire online and click on a “submit” button to have their responses recorded. Depending on the sophistication of the software, there is the potential for literally millions of responses to be automatically recorded and summarized as they are processed by the receiving server. Programs also exist to permit manipulation of variables and the random assignment of participants to experimental conditions. (See, for example, Fraley, 2004, and Gosling & Johnson, 2010, for guides to HTML-based psychological research on the Internet, and see Birnbaum, 2004, and Kraut et al., 2004, for useful Internet resources.)
Numerous advantages of using the Internet for survey research immediately come to mind. At the top of the list are efficiency and cost (e.g., see Buchanan, 2000; Skitka & Sargis, 2005). Thousands, if not millions, of participants who vary in age, ethnicity, and nationality can be contacted through a few keystrokes on a computer. Time and labor are dramatically reduced relative to mail or telephone surveys, let alone personal interviews. Online questionnaires are paperless, thus saving natural resources and copying costs. Participants may respond when it is convenient and do so without leaving the comfort of their home, office, dorm room, or other Internet site. In addition, researchers can easily add video, visual, and auditory cues to Internet surveys and customize response options based on respondents’ answers to questions. The order of questions and response options can be randomized to help minimize response biases (Tuten, 2010).

In addition to reaching large and potentially diverse samples, Internet surveys may also access groups that typically are underrepresented in psychological research (Skitka & Sargis, 2005). The prevalence on the Web of chat rooms, special-interest groups, and support groups provides an “in” for a researcher seeking specific samples of participants, whether it be pet owners, members of hate groups, cancer survivors, victims of various crimes, or any of a multitude of respondent types that may not be as easily reached by traditional survey methods. Because the Internet is truly a worldwide source of participants, it also opens up new possibilities for cross-cultural research (e.g., Gosling et al., 2004).

Internet-based surveys are also not without their disadvantages. At the top of this list is the potential for sample biases (Birnbaum, 2000; Kraut et al., 2004; Schmidt, 1997). At present, there is no way to generate a random sample of Internet users. Consequently, Internet researchers must make do with nonprobability samples. Both response rate bias and selection bias are likely to be present. Problems with low response rates can occur due to nonresponding just as occurs with other survey methods. In fact, response rates typically are lower for online surveys than for comparable mail or telephone surveys (see Kraut et al., 2004; Skitka & Sargis, 2005). As we have seen, individuals who respond to a survey differ on important characteristics from those who do not respond. Selection bias is present because respondents are a convenience sample comprised of individuals who have Internet access. Higher income households in the United States are more likely to have Internet access, and those households with children are more likely to have access than those without children. White and Asian householders are nearly twice as likely to have Internet access as those householders who are Black or Hispanic (Newburger, 2001).

Selection biases can be exaggerated due to the method of soliciting participants. Researchers can obtain samples of respondents by posting research notices on websites that promote research opportunities (e.g., the website associated with APS identified in Chapter 1) or by simply creating a Web page with the survey (e.g., personality survey) and wait for users to locate it (“hits”) via Internet search engines (Krantz & Dalal, 2000). Companies now provide (for a fee) access to recruited “panels” of potential respondents (see, for example, Tuten, 2010) or maintain websites enabling researchers to access and pay participants from diverse subject pools (e.g., Amazon’s Mechanical Turk; see, for example,
Other strategies include sending notices of the research project to individuals or groups likely to respond because of their interest in the survey topic. As Skitka and Sargis (2005) emphasize, however, not only are Internet users not representative of the general population, but also members of Internet special interest groups are not necessarily representative of their specific groups.

Lack of control over the research environment is also a major disadvantage of Internet surveys (Birnbaum, 2000; Kraut et al., 2004). As we mentioned in Chapter 3, this lack of control raises serious ethical issues related to informed consent and protecting individuals from harm as a consequence of their participation (e.g., emotional distress over survey questions). Because the researcher is not present, there is no easy way to determine if respondents have a clear understanding of the instructions, are answering conscientiously and not frivolously or even maliciously, or are creating multiple submissions (e.g., Kraut et al., 2004). Respondents may participate alone or in groups, under distracting conditions, without the knowledge of the researcher (Skitka & Sargis, 2005). One Internet researcher worried that respondents to survey questions about probability and risk were using calculators even though instructions requested them not to (Birnbaum, 2000). It seems safe to say that the advantages of Internet surveys outweigh many of the disadvantages. As technology improves and IRB committees devise acceptable methods for protecting human participants, survey research on the Internet will continue to improve as a method for collecting survey data (see Box 5.2).

BOX 5.2

INTERNET STARTUP: CONDUCTING ONLINE SURVEYS

The Internet is a popular source of participants for survey researchers. There are both advantages and disadvantages, however, associated with online survey methodology (see text). We strongly urge those who might be interested in conducting a research study online to first become familiar with the issues, both procedural and ethical, associated with this methodology. Useful reviews and resources are identified in the text. And before starting, seek advice from investigators who are experienced with online survey research.

Two major startup hurdles facing online survey researchers include selecting an appropriate sample and implementing an online survey.

- **Sampling** Although sampling randomly from the population of Internet users is not possible, several options exist for recruiting individuals (see text) to create “participant pools” that are more diverse than those comprised of typical college students. One or more sampling options may be reasonable to meet the goals of your study. Note, however, that there can be monetary costs associated with these options.

- **Implementing the Survey** By “implementing,” we mean developing an online instrument, making it available online, recording and organizing response data. Some programming knowledge will be necessary to implement a sophisticated survey instrument from scratch, for example, one that uses multimedia applications, random sequencing of questions and response options, customized participant feedback, as well as efficient data collection procedures. Nevertheless, conducting a simple online survey need not be the daunting task it once was, even for those with little or no programming experience. Various companies (at a cost) provide easy-to-use software programs (just click!) and response-hosting services.
SURVEY-RESEARCH DESIGNS

- The three types of survey design are the cross-sectional design, the successive independent samples design, and the longitudinal design.

One of the most important decisions survey researchers must make is the choice of a research design. A survey-research design is the overall plan or structure used to conduct the entire study. There are three general types of survey-research designs: the cross-sectional design, the successive independent samples design, and the longitudinal design. There is no all-purpose survey-research design. Researchers choose a design based on the goals of the study.

Cross-Sectional Design

- In the cross-sectional design, one or more samples are drawn from the population(s) at one time.
- Cross-sectional designs allow researchers to describe the characteristics of a population or the differences between two or more populations, and correlational findings from cross-sectional designs allow researchers to make predictions.

The cross-sectional design is one of the most commonly used survey-research designs. In a cross-sectional design, one or more samples are drawn from the population at one time. The focus in a cross-sectional design is description—describing the characteristics of a population or the differences among two or more populations at a particular time. For example, male and female college students’ attitudes toward declaring oneself “In a Relationship” on their Facebook page (a.k.a. “going Facebook official”) were examined in a cross-sectional survey design (Fox & Warber, 2013). The design was cross-sectional because the researchers examined a sample from one population (a “cross-section”) at one point in time. They recruited 403 participants from courses at a large Midwestern university with the promise of earning extra credit for completing the online survey. Among other items in their questionnaire, the researchers asked students to use a 5-point scale (1 = Strongly disagree; 5 = Strongly agree) for such statements as: “A Facebook official relationship means both partners are exclusively dating each other,” or “If I see that a person is in a Facebook official relationship, I assume they might still be dating other people” (p. 5). Results from this survey pointed to several potential flash points in heterosexual relationships posted as “In a Relationship.” For example, men were less likely than women to believe that “Facebook official” meant “exclusivity and seriousness” (p. 6).

Survey researchers who use nonprobability samples have a responsibility to explain how their sampling procedures affect the representativeness of their sample and the generalizability of their findings. The researchers who investigated romantic relationships posted on Facebook called attention to the fact that their sample was not representative of all Facebook users, for example, that gay and lesbian populations were underrepresented, as were students outside the United States (Fox & Warber, 2013). Moreover, the authors emphasized that their study was “exploratory.” What is most important for you to consider, both as a researcher and as a consumer of information, is the degree to which
a survey sample represents the population of interest. The best way to do that is to examine the sampling methodology: *Was the sample randomly selected from a well-defined sampling frame that closely matches the population of interest?* If it does not, then you know to be critical about what can be concluded from the survey’s results.

Cross-sectional designs are ideally suited for the descriptive and predictive goals of survey research. Surveys are also used to assess changes in attitudes or behaviors over time and to determine the effect of some naturally occurring event. For these purposes the cross-sectional design is not the method of choice. Rather, research designs are needed that systematically sample respondents over time. Two such designs are discussed in the next two sections.

Successive Independent Samples Design

- In the successive independent samples design, different samples of respondents from the population complete the survey over a time period.
- The successive independent samples design allows researchers to study changes in a population over time.
- The successive independent samples design does not allow researchers to infer how individual respondents have changed over time.
- A problem with the successive independent samples design occurs when the samples drawn from the population are not comparable—that is, not equally representative of the population.

In the **successive independent samples design**, a series of cross-sectional surveys are conducted over time (successively). The samples are independent because a *different* sample of respondents completes the survey at each point in time. There are two key ingredients: (1) The same set of questions should be asked of each sample of respondents, and (2) the different samples should be drawn from the same population. If these two conditions are met, researchers can legitimately compare survey responses over time. This design is most appropriate when the major goal of the study is to describe changes in the attitudes or behaviors within a population over time. For example, public opinion researchers frequently ask independent samples of Americans the extent to which they approve of the U.S. president (referred to as the president’s “approval ratings”). Changes in approval ratings over time are used to characterize Americans’ opinions of the president’s actions.

As another example, consider a study that you may have been part of, one that has been conducted every year since 1966. Each year some 350,000 full-time freshmen from a nationally representative sample of approximately 700 colleges and universities are surveyed (Pryor, Hurtado, DeAngelo, Patuki Blake, & Tran, 2009; Sax et al., 2003). This research project represents the largest and longest empirical study of higher education in the United States, with over 1,500 universities and over 10 million students participating over the nearly 50 years of the study. Students are asked approximately 40 questions covering a number of topics, and although some changes have occurred in the questions over the decades, many questions have been asked each year, making this an excellent example of a successive independent samples design.
What can be said about changes in students’ values and goals during this time period? Sax et al. (2003) reported the results for the portion of the survey in which students are asked to rate the importance of different values to assess students’ need for meaning and purpose in their life. Two values were of particular interest: “the importance of developing a meaningful philosophy of life” and “the importance of being very well off financially” (pp. 6–7). Figure 5.3 displays the results for the percentage of students who endorsed these values as “very important” or “essential.” In the late 1960s, over 80% of students indicated that developing a meaningful philosophy of life was very important or essential—in fact, this was the top value endorsed by students. In contrast, being well off financially was very important or essential to less than 45% of the students, and ranked fifth or sixth among students’ values during the late 1960s. As can be seen in Figure 5.3, these contrasting trends in values began to shift in the early 1970s, crossed in 1977, and were completely reversed by the late 1980s.

In 2012, “being very well off financially” as a personal goal rose to an all-time high with 81.0% of incoming students identifying this as “very important” or “essential” (Pryor et al., 2012). This finding likely continues to be related to the economic downturn beginning in 2008 (Pryor et al., 2009), a conclusion supported by the fact that more students than ever in 2012 reported being affected by the cost of attending the college of their choice. Interestingly, a new question was added in 2012 asking about the amount of time expected to earn their degree. Among the incoming first-year students, 84.3% believed they would graduate in four years. In reality, only about half that number will graduate in four years (see Pryor et al., 2012).

The successive independent samples design has limitations. Consider another finding from the 2012 national survey of incoming first-year college students (Pryor et al., 2012). The survey asked 10 questions about social and political views. Of these questions, support for legalizing same-sex marriage...
had the highest rate of agreement among incoming students (75.0%), up from 50.9% when the question was first asked in 1997. How can we account for this change in attitudes between 1997 and 2012? The answer is that we can’t, at least not simply on the basis of these data. Successive independent samples designs allow us to describe changes over time in the distribution of population characteristics, but identifying the cause of any change is difficult. Note that in attempting to explain the increase in students identifying “being well off financially” as an important personal goal, we suggested that responses to other questions in the survey suggested that one reason for this change was a poor economy. The point is that other data must be sought to explain why nearly 25% more students entering college in 2012 than those beginning college in 1997 support legalizing same-sex marriage.

A second potential limitation of the successive independent samples design arises when the successive samples are not representative of the same population. Imagine that in the 1997 survey of incoming college students the sample comprised students from small rural colleges and in 2012 students from large urban universities. The comparisons of students’ attitudes toward same-sex marriage over this time period would be meaningless. Support for legalized same-sex marriage might differ between these students attending these types of schools, which could account for the difference. This hypothetical example illustrates the problem of noncomparable successive samples. Changes in the population across time can be described accurately only when the successive independent samples represent the same population. Although sophisticated statistical procedures exist to help unravel the problems associated with noncomparable successive samples, the best solution is to avoid the problem by carefully selecting successive samples that represent the same population.

Longitudinal Design

- In the longitudinal design, the same respondents are surveyed over time in order to examine changes in individual respondents.
- Because of the correlational nature of survey data, it is difficult to identify the causes of individuals’ changes over time.
- As people drop out of the study over time (attrition), the final sample may no longer be comparable to the original sample or represent the population.

The distinguishing characteristic of the **longitudinal design** is that the same sample of respondents is surveyed more than once. The longitudinal design has two important advantages. First, the investigator can determine the direction and extent of change for individual respondents. Also, because changes in each individual’s responses are assessed, it’s easier to investigate reasons for attitude or behavior changes. Second, the longitudinal design is the best survey design when a researcher wishes to assess the effect of some naturally occurring event. The longitudinal design was used to investigate changes in attitudes and behaviors related to eating during the transitions from college to early adulthood and from early adulthood to middle years (Heatherton, Mahamedi, Striepe, Field, & Keel, 1997; Keel, Baxter, Heatherton, & Joiner, 2007). Although much is known about eating disorders in adolescents and college students, less
information is available about how disordered eating may progress as individuals settle down, marry, establish careers, raise children, and gain a stronger sense of identity. These researchers hypothesized that as individuals change their roles and life goals during adulthood, their emphasis on physical appearance may decrease, which would decrease the prevalence of eating disordered attitudes and behaviors (see Figure 5.4).

The first “panel” of the study took place in 1982, when a randomly selected sample of 800 women and 400 men from a private northeastern college was asked to complete a survey about eating and dieting. The response rate was 78% \((N = 625)\) for women and 69% \((N = 276)\) for men. In 1992 the researchers contacted these same individuals (with the help of the alumni office) and gave them the same survey again about their eating attitudes and behaviors. The third panel of data was collected in 2002, when the same individuals were in their early forties. Although longitudinal designs involve a massive effort, the potential power of such an effort is that researchers can examine changes within individuals over time.

Eating attitudes and behaviors changed over time. In the decade after college, women’s eating-disorder symptoms, chronic dieting, and body dissatisfaction decreased (Heatherton et al., 1997). However, despite these decreases, women’s dissatisfaction with their body and their desire to lose weight remained high. Men, in contrast, rarely had problems with eating and weight during college. Ten years later, however, they had experienced weight gain (an average of almost 12 pounds, compared to women’s average gain of 4 pounds). Men also reported increased dieting and symptoms of disordered eating in the 10 years after college, although this was still low relative to women.
The researchers made some interesting observations that are relevant to our understanding of longitudinal surveys. They proposed that decreases in women’s eating problems reflect their maturation during their 20s, changes in their roles, and being away from the college campus (and the pressures to be thin that occur on college campuses). It’s possible, however, that other processes may account for changes within the individuals in the sample. Using a successive independent samples design in which separate samples of college students were surveyed in 1982 and 1992, researchers noted that eating-disorder symptoms and body dissatisfaction also were lower for the college students in the 1992 sample relative to the 1982 sample (Heatherton, Nichols, Mahamedi, & Keel, 1995). These findings suggest that decreases in eating-disorder attitudes and behaviors may reflect changes at a societal level over the 10-year period (e.g., due to increasing information about eating disorders in the media). One potential problem with longitudinal survey designs is that it is difficult to pinpoint the exact causes for individuals’ changes over time.

What can be said about eating attitudes and behaviors 20 years following college? Overall, women demonstrated more weight dissatisfaction, dieting, and eating-disorder attitudes than men across the 20 years of the survey (Keel et al., 2007). In the 2002 survey, researchers observed that, on average, body weight increased significantly for both men (17 pounds since college) and women (14 pounds since college). Men’s dieting and weight dissatisfaction was greatest in 2002, paralleling their weight gain. Interestingly, by the time the women in the study were in their early forties, despite their weight gain, they reported less dieting, less disordered eating, and less dissatisfaction with their body. In fact, women’s greatest dissatisfaction with their body occurred while in college. Based on their statistical analyses, the investigators suggested that adult roles attained through marriage, parenthood, and careers were associated with decreases in women’s disordered eating. That is, while physical appearance was important during college years (e.g., for attracting a potential mate), changes in priorities associated with marriage and becoming a mother made women’s desire for thinness less important.

Another potential problem with longitudinal designs is that it can be difficult to obtain a sample of respondents who will agree to participate over time in a longitudinal study. In addition, you might think the longitudinal design solves the problem of noncomparable samples because the same people participate over and over (so of course the sample represents the same population each time). Unfortunately, the samples over time in a longitudinal design are identical only if all members of the original sample participate throughout the study. This is unlikely. For example, in the 1997 study, of the 901 participants in the original 1982 sample, only 724 (80%) returned a usable survey in 1992. In the third panel in 2002, 654 (73%) of the original 900 participants from 1982 responded to the survey and of these, 561 (86%) also responded to the 1992

1Heatherton et al. (1997) noted that because the decreases in problem eating were larger among individuals in the longitudinal survey than in the successive independent samples survey, maturational processes within individuals, in addition to societal changes, likely were operating to decrease problem eating over time.
survey. Thus, by the end of the 20 years, the researchers had survey responses for each of the three time periods (1982, 1992, 2002) for 62.3% of their original sample of 900 respondents.

Unless all the respondents in the original sample complete all phases of a longitudinal design, there is a possible problem due to attrition. Attrition is probably the most serious disadvantage of the longitudinal design because as samples decrease over time, they are less likely to represent the original population from which the sample was drawn. It is usually possible, however, to determine whether the final sample is comparable to the original sample in a longitudinal design. The characteristics of nonrespondents in the follow-up phase(s) are known because they participated in the original sample. Therefore, researchers can look at characteristics of original participants to see how these nonresponding individuals may differ from those who continued their participation.

Researchers examined problems associated with attrition by comparing the responses of individuals who responded to the original 1982 survey but did not continue (nonrespondents) to responses of individuals who continued the study through the 2002 survey (Keel et al., 2007). They found that, compared to nonrespondents, individuals who continued to participate in the study described themselves as heavier, dieting more frequently, and had a greater desire for thinness. This represents a potential response rate bias because continued participation in 2002 may have been related to interest in the survey topic. It is possible that weight and body concerns in the 2002 survey may have been inflated because of this potential response rate bias.

The advantages of the longitudinal design, such as determining changes for individual respondents, arise because the same individuals are surveyed more than once. Paradoxically, problems can also arise in longitudinal designs because of this same feature. One possible problem is that respondents may strive heroically to be consistent rather than to appear to have changed over time. Another potential problem is that the initial survey may sensitize respondents to the issue under investigation. For example, consider a longitudinal design used to assess students’ concern about crime on campus. Once the study starts, participants may pay more attention to crime reports than they normally would. You might recognize this as an illustration of reactive measurement—people behaving differently because they know they are participating in a study.

Rather than trying to be heroically consistent in their eating attitudes and behaviors over time, participants in the longitudinal design may have been reluctant to report that they were having the same problems with eating as when they were in college. Thus, the decreases the researchers observed in problem eating during the 10-year period may be due to the fact that “women who are approaching their thirties may be embarrassed to admit they are experiencing problems typically associated with adolescence” (Heatherton et al., 1997, p. 124). When survey respondents are asked to report their attitudes and behaviors, researchers must be alert to reasons why their respondents’ reports may not correspond to their actual behavior. We will return to this important issue later in this chapter.
Even if the sample of respondents was perfectly representative, the response rate was 100%, and the research design was elegantly planned and perfectly executed, the results of a survey will be useless if the questionnaire is poorly constructed. In this section we describe the most common survey research instrument, the questionnaire. To be useful, questionnaires should yield reliable and valid measures of demographic variables and of individual differences on self-report scales. Although there is no substitute for experience when it comes to preparing a good questionnaire, there are a few general principles of questionnaire construction with which you should be familiar. We describe six basic steps in preparing a questionnaire and then offer specific guidelines for writing and administering individual questions.

Questionnaires as Instruments

- Most survey research relies on the use of questionnaires to measure variables.
- Demographic variables describe the characteristics of people who are surveyed.
- The accuracy and precision of questionnaires requires expertise and care in their construction.
- Self-report scales are used to assess people’s preferences or attitudes.

The value of survey research (and any research) ultimately depends on the quality of the measurements that researchers make. The quality of these measurements, in turn, depends on the quality of the instruments used to make the measurements. The primary research instrument in survey research is the questionnaire. On the surface, a questionnaire may not look like the high-tech instruments used in much modern scientific research; but, when constructed and used properly, a questionnaire is a powerful scientific instrument for measuring different variables.

Demographic Variables Demographic variables are an important type of variable frequently measured in survey research. Demographic variables are used to describe the characteristics of the people who are surveyed. Measures such as race, ethnicity, age, and socioeconomic status are examples of demographic variables. Whether researchers decide to measure these variables depends on the goals of the study, as well as on other considerations. By asking respondents to identify their race and ethnicity, researchers document the diversity in their sample and, if relevant to their research questions, compare groups according to race and ethnicity.

Measuring a demographic variable such as race may at first seem very easy. One straightforward method is simply to ask respondents to identify their race in an open-ended question: What is your race? ________ Such an approach may be straightforward, but the resulting measurement of race may not be satisfactory. For example, some respondents may mistakenly confuse “race” and “ethnicity.” Important distinctions in identifying ethnic groups may go
unrecognized by respondents and researchers. For instance, Hispanic does not identify a race; Hispanic designates all those whose country of origin is Spanish speaking. So, a person born in Spain would be classified as Hispanic. Latino is a term that is sometimes used interchangeably with Hispanic, but Latino designates people whose origin is from the countries of North and South America, excluding Canada and the United States. Distinctions like these can be confused (see Figure 5.5). For example, a person known to the authors is of European Spanish heritage and correctly considers himself a Caucasian, and not Latino. His ethnicity is Hispanic.

In general, “quick and dirty” approaches to measurement in survey research tend to yield messy data that are hard to analyze and interpret. For example, 9 million people in the 2010 U.S. Census identified themselves as multi-racial (Jones & Bullock, 2013). If researchers fail to include this as a possible response option, the information from participants may be incorrect—or they may skip the question entirely. Entwisle and Astone (1994) recommend a deliberate—and effective—approach when measuring race. They outline a series of nine questions to measure a person’s race. One of these questions is “What race do you consider yourself to be?” Other questions seek information such as what countries the person’s ancestors came from and whether Latino respondents are Mexican, Puerto Rican, Cuban, or something else. This detailed series of questions allows researchers to measure race and ethnicity less ambiguously, more accurately, and more precisely. We use this example of measuring race and ethnicity to illustrate a more general principle: The accuracy and precision of questionnaires as survey-research instruments depends upon the expertise and care that go into their construction.
Preferences and Attitudes Individuals’ preferences and attitudes are frequently assessed in surveys. For example, a marketing researcher may be interested in consumers’ preferences for different brands of coffee, or a political group may be interested in potential voters’ attitudes regarding controversial public issues. Self-report scales are commonly used to measure people’s judgments about items presented on the scale (e.g., divorce, political candidates, life events) or to determine differences among people on some dimension presented on the scale (e.g., personality traits, amount of stress). Self-report measures, often in the form of a questionnaire, are among the most frequently used tools in psychology. Given their importance, it is critical that these measures be developed carefully. Two critical characteristics of the measurements made using self-report questionnaires are essential characteristics of all measurements—reliability and validity.

Reliability and Validity of Self-Report Measures

- Reliability refers to the consistency of measurement and is frequently assessed using the test–retest reliability method.
- Reliability is increased by including many similar items on a measure, by testing a diverse sample of individuals, and by using uniform testing procedures.
- Validity refers to the truthfulness of a measure: Does it measure what it intends to measure?
- Construct validity represents the extent to which a measure assesses the theoretical construct it is designed to assess; construct validity is determined by assessing convergent validity and discriminant validity.

Reliable self-report measures, like reliable observers or any other reliable measurements, are characterized by consistency. A reliable self-report measure is one that yields similar (consistent) results each time it is administered. Self-report measures must be reliable when making predictions about behavior. For example, in order to predict stress-related health problems, measures of individuals’ life stress must be reliable. There are several ways to determine a test’s reliability. One common method is to compute a test–retest reliability. Usually, test–retest reliability involves administering the same questionnaire to a large sample of people at two different times (hence, test and retest). For a questionnaire to yield reliable measurements, people need not obtain identical scores on the two administrations of the questionnaire, but a person’s relative position in the distribution of scores should be similar at the two test times. The consistency of this relative positioning is determined by computing a correlation coefficient using the two scores on the questionnaire for each person in the sample. A desirable value for test–retest reliability coefficients is .80 or above, but the size of the coefficient will depend on factors such as the number and types of items.

A self-report measure with many items to measure a construct will be more reliable than a measure with few items. For example, we are likely to have unreliable measures if we try to measure a baseball player’s hitting ability based on a single time at bat or a person’s attitude toward the death penalty based on a single question on a survey. The reliability of our measures will increase greatly if we average the behavior in question across a large number
of observations—many at-bats and many survey questions (Epstein, 1979). Of course, researchers must walk a fine line between too few items and too many items. Too many items on a survey can cause respondents to become tired or careless about their responses.

In general, measurements will also be more reliable when there is greater variability on the factor being measured among the individuals being tested. Often the goal of measurement is to determine the extent to which individuals differ. A sample of individuals who vary a great deal from one another is easier to differentiate reliably than are individuals who differ by only a small amount. Consider this example. Suppose we wish to assess soccer players’ ability to pass the ball effectively to other players. We will be able to differentiate more reliably good players from poor players if we include in our sample a wider range of players—for example, professionals, high school players, and peewee players. It would be much harder to differentiate players reliably if we tested only professional players—they’d all be good! Thus, a test is often more reliable when administered to a diverse sample than when given to a restricted sample of individuals.

A third and final factor affecting reliability is related to the conditions under which the questionnaire is administered. Questionnaires will yield more reliable measurements when the testing situation is free of distractions and when clear instructions are provided for completing the questionnaire. You may remember times when your own test performance was hindered by noise or when you weren’t sure what a question was asking.

The reliability of a survey measure is easier to determine and to achieve than the validity of a measure. The definition of validity is deceptively straightforward—a valid questionnaire measures what it is intended to measure. Have you ever heard students complain that questions on a test didn’t seem to address the material covered in class? This is an issue of validity.

At this point, we will focus on construct validity, which is just one of the many ways in which the validity of a measurement is assessed. The construct validity of a measure represents the extent to which it measures the theoretical construct it is designed to measure. One approach to determining the construct validity of a test relies on two other kinds of validity: convergent validity and discriminant validity. These concepts can best be understood by considering an example.

Psychologists are increasingly examining factors such as happiness, life satisfaction, self-esteem, optimism, and other indicators of well-being (Lucas, Diener, & Suh, 1996). However, it’s not clear whether these different indicators all measure the same construct (e.g., well-being) or whether each is a distinguishable construct. The researchers conducted several studies in which they asked individuals to complete questionnaire measures of these different indicators of well-being. For our purposes we will focus on a portion of their data from their third study, in which they asked participants to complete three scales: two life satisfaction measures, the Satisfaction with Life Scale (SWLS) and a 5-item Life Satisfaction measure (LS-5); and a measure of Positive Affect (PA). At issue in this example is whether the construct of life satisfaction—the quality of being happy with one’s life—can be distinguished from being happy more generally (positive affect).
Table 5.1 presents data showing how the construct validity of “life satisfaction” can be assessed. The data are presented in the form of a correlation matrix. A correlation matrix is an easy way to present a number of correlations. Look first at the values in parentheses that appear on the diagonal. These parenthetical correlation coefficients represent the values for the reliability of each of the three measures. As you can see, the three measures show good reliability (each is above .80). Our focus, however, is on measuring the construct validity of “life satisfaction,” so let’s look at what else is in Table 5.1.

It is reasonable to expect that scores on the Satisfaction with Life Scale (SWLS) should correlate with scores on the 5-item Life Satisfaction measure; after all, both measures were designed to assess the life satisfaction construct. In fact, Lucas et al. observed a correlation between these two measures of .77, which indicates that they correlate as expected. This finding provides evidence for convergent validity of the measures; the two measures converge (or “go together”) as measures of life satisfaction.

The case for the construct validity of life satisfaction can be made even more strongly when the measures are shown to have discriminant validity. As can be seen in Table 5.1, the correlations between the Satisfaction with Life Scale (SWLS) and Positive Affect (.42) and between the 5-item Life Satisfaction measure (LS-5) and Positive Affect (.47) are lower. These findings show that life satisfaction measures do not correlate as well with a measure of another theoretical construct—namely, positive affect. The lower correlations between the life satisfaction tests and the positive affect test indicate that different constructs are being measured. Thus, there is evidence for discriminant validity of the life satisfaction measures because they seem to “discriminate” life satisfaction from positive affect—being satisfied with one’s life is not the same as general happiness. The construct validity of life satisfaction gains support in our example because there is evidence for both convergent validity and discriminant validity.

Constructing a Questionnaire

- Constructing a questionnaire involves deciding what information should be sought and how to administer the questionnaire, writing a draft of the questionnaire, pretesting the questionnaire, and concluding with specifying the procedures for its use.
- The wording of questionnaires should be clear and specific using simple, direct, and familiar vocabulary.
- The order in which questions are asked on a questionnaire needs to be considered seriously because the order can affect respondents’ answers.
Steps in Preparing a Questionnaire Constructing a questionnaire that will yield reliable and valid measurements is a challenging task. In this section we suggest a series of steps that can help you meet this challenge, especially if you are constructing a questionnaire for the first time as part of a research project.

Step 1: Decide what information should be sought. Your decision obviously determines the nature of the questions to be asked. It is important to predict the likely results of a proposed questionnaire and decide whether these “findings” would meet your goals. A poorly designed questionnaire takes as much time to administer and analyze as a well-conceived one, but only the well-planned one will lead to interpretable results!

Step 2: Decide how to administer the questionnaire. The decision is determined primarily by the survey method chosen for the study: mail? telephone? Internet? personal interview? You will want to review the pros and cons of each method.

Step 3: Prepare a draft questionnaire. Keep in mind there is no reason to develop your own instrument if other researchers have already prepared one. Using the same questionnaire (or items) allows you to compare your results directly with those of earlier studies. If no available instrument meets your needs, you will need to draft your own. Carefully consider guidelines for wording and ordering of questions.

Step 4: Reexamine and revise the questionnaire. This is a critical step and should be taken after others with knowledge of survey methods, as well as those with expertise in the area you are focusing on, have reviewed the draft. For example, if you are doing a survey of students’ attitudes toward a campus food service, it would be advisable to have your questionnaire reviewed by the campus food director. When dealing with a controversial topic, representatives from both sides of the issue should screen your questions for possible bias.

Step 5: Pretest the questionnaire. Administer the questionnaire to a sample of respondents similar to those anticipated in the final administration. Solicit feedback regarding particular items and the questionnaire as a whole. The pretest can also serve as a “dress rehearsal” for interviewers (if used), who should be closely monitored to ensure proper procedures for administering the questionnaire are followed.

Step 6: Edit the questionnaire and specify the procedures to be followed in its administration. Correct any problems in wording or administration of the questionnaire based on results from the pretest.

Guidelines for the Effective Wording of Questions Lawyers have long known that how a question is phrased has great impact on how that question is answered. Survey researchers need to be equally conscious of this principle. This point is illustrated in a study that examined people’s opinions about allocating scarce vaccines during a hypothetical flu epidemic (Li, Vietri, Galvani, & Chapman, 2010). These researchers found that respondents’ decisions about vaccine allocation (in effect, who would live and who would die) were affected by whether vaccination policies were written in terms of “saving lives” versus “lives lost.” Thus, the way the questions were worded influenced how respondents judged
the value of people’s lives. In a typical survey, only one wording is used for each question so, unfortunately, the influence of the wording of questions in a given survey can almost never be determined precisely.

Survey researchers usually choose from two general types of questions when writing a questionnaire. The first type is a free-response (open-ended) question and the second type is a closed (multiple-choice) question. Free-response questions, like the essay questions on a classroom test, merely specify the area to be addressed in a response. For example, the question “What are your views on legal abortion?” is a free-response question. By contrast, closed questions provide specific response alternatives. “Is police protection very good, fairly good, neither good nor bad, not very good, or not good at all?” is a closed question about the quality of police protection in a community.

The primary advantage of free-response questions is that they offer the respondent greater flexibility than closed questions. However, this advantage is often more than offset by the difficulties that arise in recording and scoring responses to free-response questions. For example, extensive coding is frequently necessary to summarize rambling responses to free-response questions. Closed questions, on the other hand, can be answered more easily and quickly and fewer scoring problems arise. It is also much easier to summarize responses to closed questions because the answers are readily comparable across respondents. A major disadvantage of closed questions is that they reduce expressiveness and spontaneity. Further, respondents may have to choose a less-than-preferred response because no presented alternative really captures their views. Hence, the responses obtained may not accurately reflect the respondents’ opinion.

In what follows we provide some guidelines for the effective wording of survey questions:

- **Use vocabulary that is simple, direct, and familiar to all respondents.** Be aware that respondents may interpret wording according to their own biases and interpretations. Words like “few,” “recently,” and “usually,” or terms such as “global warming” may be interpreted differently by individuals. Respondents also tend to assume that words in a survey are used in the same way as in their subculture or culture. Within today’s popular culture does “bad” mean “good”? Respondents reasonably assume that if the surveyor asks a question, then it must be one a respondent can answer. This may lead respondents to answer questions that have no (valid) answers!
- **Avoid double-barreled, leading, or loaded questions.** Table 5.2 illustrates each of these problematic questions and how to avoid them.
- **Be as short as possible (20 or fewer words).** Shorter sentences are easier to understand and permit respondents to move efficiently through your questionnaire. Also consider carefully the length of your survey instrument. Are there so many questions that respondents will get bored or try to answer quickly just to finish? Either of these reactions to your questionnaire may affect the quality of the answers you obtain.
- **Present conditional information prior to key ideas.** For example, it would be better to ask, “If you were forced to leave your present job, what type of work would you seek?” than to ask, “What type of work would you seek if you were forced to leave your present job?”
Avoid potential response bias. The potential for response bias exists when respondents use only extreme points on rating scales, or only the midpoint, or when respondents agree (or disagree) with every item. When using multiple items to assess a construct, it’s important to word some of the items in the opposite direction. For example, an assessment of emotional well-being might include the following items:

My mood is generally positive.
1 ------ 2 ------ 3 ------ 4 ------ 5
Strongly disagree Strongly agree

I am often sad.
1 ------ 2 ------ 3 ------ 4 ------ 5
Strongly disagree Strongly agree

Respondents with a response bias in which they always agree with statements might circle 5 on both scales, resulting in an unreliable measure of well-being. Responses to these “reversed” items are “reverse-scored” (1 = 5, 2 = 4, 4 = 2, 5 = 1) when participants’ responses are summed to derive a total score for emotional well-being.

Check your survey instrument for readability. Ask people familiar with the topic of the survey to read your questionnaire carefully and look for words, phrases, or sentences that are ambiguous or confusing.
Although it’s clear that question wording in surveys can pose problems, the solution is less clear. *At a minimum, the exact wording of critical questions should always be reported along with the data describing respondents’ answers.* The potential influence of the wording of questions is yet another illustration of why a multi-method approach is so essential when investigating behavior.

Ordering of Questions The order of the questions in a survey requires careful consideration. The first few questions set the tone for the rest of the questionnaire, and determine how willingly and conscientiously respondents will work on subsequent questions. For self-administered questionnaires, it is best to begin with the most interesting set of questions in order to capture the respondents’ attention. Demographic data should be obtained at the end of a self-administered questionnaire. For personal or telephone interviews, on the other hand, demographic questions are frequently asked at the beginning because they are easy for the respondent to answer and thus bolster the respondent’s confidence. They also allow time for the interviewer to establish rapport before asking questions about more sensitive matters.

The order in which particular questions are asked can have dramatic effects. Consider a study in which researchers varied the order of two questions concerning abortion, one general and one specific. The general question was “Do you think it should be possible for a pregnant woman to obtain a legal abortion if she is married and does not want any more children?” The more specific question was “Do you think it should be possible for a pregnant woman to obtain a legal abortion if there is a strong chance of a serious defect in the baby?” When the general question was asked first, 60.7% of respondents said “yes,” but when the general question followed the specific question, only 48.1% of respondents said “yes.” The corresponding values for the specific question were 84% and 83% agreement in the first and second positions, respectively. The generally accepted method for dealing with this problem is to use *funnel questions,* which means starting with the most general question and moving to specific questions pertaining to a given topic.

The final aspect of the ordering of survey questions that we will consider is the use of *filter questions*—general questions asked of respondents to find out whether they need to be asked specific questions. For example, the question “Do you own a car?” might precede a series of questions about the costs of maintaining a car. In this instance, the respondents would answer the specific questions only if their response to the general question was “yes.” If that answer was “no,” the interviewer would not ask the specific questions (in a self-administered questionnaire, the respondent would be instructed to skip that section). When the filter questions involve objective information (e.g., “Are you over 65?”), their use is relatively straightforward. Caution must be exercised, however, in using behavioral or attitudinal questions as filter questions. Smith (1981) first asked respondents whether they approved of hitting another person in “any situations you can imagine.” Logically, a negative response to this most general question should imply a negative response to any specific questions. Nonetheless, over 80% of the people who responded “no” to the general
question then reported that they approved of hitting another person in specific situations, such as in self-defense. Although findings such as this suggest that filter questions should be used cautiously, the need to demand as little of the respondents’ time as possible makes filter questions an essential tool in the design of effective questionnaires.

A well-conducted survey is an efficient way to accomplish the research goals of description and prediction. When distributed to dozens if not hundreds of individuals, even a modest-sized questionnaire can quickly generate many thousands of responses to individual items. And, as we have seen, by using the Internet, researchers can literally obtain millions of responses in a short period of time. But there is a catch! How does one deal with this multitude of responses? The answer is: By careful planning!

Data analysis of responses obtained from questionnaires must be considered prior to writing the survey items. Will open-ended questions be used? Is the goal mainly descriptive; for example, are proportions or percentages of events in a population of primary interest? Is the goal correlational, for example, relating responses on one question to those of another? Will respondents use a yes–no response format? A yes–maybe–no format? Self-report scales? These response formats provide different kinds of data. As you have learned, qualitative data in the form of open-ended responses will require rules for coding and methods for getting intercoder reliabilities. Categorical data obtained from a yes–no format yield nominal data, whereas scales are typically assumed to provide interval data (see Chapter 4 for comments on types of scales). These types of data require different approaches for statistical analysis.

It is important to anticipate the likely results of the proposed questionnaire and then to decide whether these “findings” will answer the research questions. When “predicting” your results, you will want to make sure that the results can be analyzed appropriately. In other words, you should have an analysis plan prior to conducting the survey. During the planning stage, we suggest that you consult with experienced survey researchers regarding the correct statistical analyses.

Once again we refer you to Chapters 11 and 12 of this textbook to gain (or regain) familiarity with statistical procedures. Should your interest in conducting a survey lead you to look for relationships (correlations) among categorical (nominal) variables, you will need to go beyond this textbook. The appropriate statistical analysis for examining relationships between nominal variables is the chi-square test of contingency. An introduction to this test is found in nearly all introductory statistics books (e.g., Zechmeister & Posavac, 2003). If you are going to correlate responses to interval scales, then a Pearson Product-Moment correlation (r) is appropriate. This type of analysis was introduced in Chapter 4 when we discussed interobserver reliability. We will have more to say about correlational analyses toward the end of this chapter.
THINKING CRITICALLY ABOUT SURVEY RESEARCH

Correspondence Between Reported and Actual Behavior

- Survey research involves reactive measurement because individuals are aware that their responses are being recorded.
- Social desirability refers to pressure that respondents sometimes feel to respond as they “should” believe rather than how they actually believe.
- Researchers can assess the accuracy of survey responses by comparing these results with archival data or behavioral observations.

Regardless of how carefully survey data are collected and analyzed, the value of these data depends on the truthfulness of respondents’ answers to the survey questions. Should we believe that people’s responses on surveys reflect their true thoughts, opinions, feelings, and behavior? The question of the truthfulness of verbal reports has been debated extensively, and no clear-cut conclusion has emerged. In everyday life, however, we regularly accept the verbal reports of others as valid. If a friend tells you she enjoyed reading a certain novel, you may ask why, but you do not usually question whether the statement accurately reflects your friend’s feelings. There are some situations in everyday life, however, when we do have reason to suspect the truthfulness of someone’s statements. When looking for a used car, for instance, we might not always want to trust the “sales pitch” we receive. Generally, however, we accept people’s remarks at their face value unless we have reason to suspect otherwise. We apply the same standards to the information we obtain from survey respondents.

By its very nature, survey research involves reactive measurement. Respondents know their responses are being recorded, and they may also suspect their responses may prompt some social, political, or commercial action. Hence, pressures are strong for people to respond as they “should” believe, not as they actually believe. The term often used to describe these pressures is social desirability (the term “politically correct” refers to similar pressures). For example, if respondents are asked whether they favor giving help to the needy, they may say “yes” because they believe this is the most socially acceptable attitude to have. In survey research, as was true with observational research, the best protection against reactive measurement is to be aware of its existence.

In Chapter 4 we pointed out how individuals’ self-reports can be affected by subjective interpretations and lack of awareness of factors that influence their behavior (see Box 4.1). American and Mexican students’ self-reported sociability failed to correspond to behavioral measures of sociability (Ramírez-Esparza, et al., 2009; see Table 4.4). Thus, measures of personality variables based on self-reports may not correlate with behavioral measures.

Moreover, many studies have shown that people’s actual behavior may differ from what they say they will do when presented with a hypothetical situation (see Baumeister et al., 2007). A classic study by Latané and Darley (1970) found that bystanders are more likely to help a victim when the bystander is alone than when other witnesses are present. However, when a second group of participants was asked whether the presence of bystanders would influence the
likelihood they would help a victim, they uniformly said it would not! Thus, individuals’ verbal reports may not correspond to actual behavior (see Figure 5.6). Research findings such as these should make us extremely cautious of reaching conclusions about people’s behavior solely on the basis of verbal reports.

The potential discrepancy between observed behavior and verbal reports illustrates again the wisdom of a multimethod approach in helping us to understand behavior and mental processes. The accuracy of verbal reports, for instance, can sometimes be checked by consulting archival records. Reported age, voting behavior, home ownership, amount of charitable contributions, and other responses to a survey perhaps can be verified by examining available records (e.g., Parry & Crossley, 1950). The accuracy of verbal reports can be, and should be, assessed by direct observation of behavior whenever possible (see Baumeister et al., 2007).

Correlation and Causality

- When two variables are related (correlated), we can make predictions for the variables; however, we cannot, simply knowing a correlation, determine the cause of the relationship.
- When a relationship between two variables can be explained by a third variable, the relationship is said to be “spurious.”
- Correlational evidence, in combination with a multimethod approach, can help researchers identify potential causes of behavior.

Surveys are often used in correlational research, and correlational research is an excellent method for meeting the scientific goals of description and prediction. For example, studies demonstrating correlations between physical health and psychological well-being allow researchers to make predictions regarding health-related problems.

Correlational evidence allows researchers to make predictions for the correlated variables. However, the familiar maxim, “Correlation does not imply causation,” reminds us that our ability to make causal inferences based solely
on a correlation between two variables is very limited. For instance, there is a reliable correlation between being outgoing (socially active) and being satisfied with one’s life (Myers & Diener, 1995). Based on this correlation alone, however, we could not argue convincingly that being more outgoing and socially active causes people to be more satisfied with their lives. Although it is possible that being outgoing causes people to be more satisfied, the “reverse” causal relationship also may be true: Being satisfied with life may cause people to be more outgoing and socially active. It is impossible to determine the correct causal direction simply by knowing the correlation between the two variables.

Not being able to determine the direction of the relationship in a correlation is only one challenge we face. It’s possible there is another causal interpretation for the correlation between the two variables. For example, a third variable, number of friends, could cause people to be more outgoing and more satisfied with their lives. A correlation that can be explained by a third variable is called a spurious relationship (Kenny, 1979). In this particular example, “number of friends” is a possible third variable that could account for the relationship between being outgoing and being satisfied with one’s life. Individuals with more friends may be more likely to be outgoing and satisfied with life than people with fewer friends. This isn’t to say that the original positive correlation between being outgoing and life satisfaction doesn’t exist (it certainly does); it just means that other variables that were not measured (e.g., number of friends) may explain why the relationship exists.

It is extremely important to understand why it is not possible to make a causal inference based only on a correlation between two variables. It is equally important to recognize that correlational evidence can be very useful in identifying potential causes of behavior. Sophisticated statistical techniques, such as path analysis, can be used to help with causal interpretations of correlational studies (Baron & Kenny, 1986; Holmbeck, 1997). Path analysis involves the identification of mediator variables and moderator variables. A mediator variable is a variable that is used to explain the correlation between two variables. A moderator variable is a variable that affects the direction or strength of the correlation between two variables.

Figure 5.7 illustrates an example of a mediating variable in a study of the effects of poverty on children’s psychological adjustment (Evans, Gonnella, Marcynyszyn, Gentile, & Salpekar, 2005). Consistent with previous research,
these investigators observed a correlation between their measures of poverty and psychological distress: the greater the poverty, the greater the distress among children (path \(a \) in Figure 5.7). The researchers also proposed a mediating variable, *chaos*, to account for this relationship. They theorized that chaotic living conditions characterized by unpredictability, confusion, lack of structure, noise, overcrowding, and poor-quality housing can explain the relationship between poverty and children’s psychological distress. This is shown in paths \(b \) and \(c \) in Figure 5.7.

Consistent with their predictions, the results of their study indicated that greater poverty was associated with greater chaos in the home (path \(b \)). Also, greater chaos was associated with greater psychological distress (path \(c \)). The final step in path analysis is to show that when the correlations between paths \(b \) and \(c \) are taken into account using a statistical procedure, the correlation observed initially for path \(a \) (between poverty and distress) becomes zero (i.e., no relationship). This is exactly what Evans and his colleagues found. Their path analysis allowed them to say that the relationship between poverty and children’s distress can be explained by, or is mediated by, the degree of chaos in the home.

Although Evans and his colleagues did not describe potential moderating variables, we can offer a hypothetical illustration. Suppose the pattern of correlations observed in Figure 5.7 is different for boys compared to girls. We could hypothesize, for example, that the mediating effect of chaos exists only for boys and not for girls. In this case we would be arguing that the sex of the child, boy or girl, is a moderating variable—that is, it affects the direction or strength of the correlations among poverty, chaos, and psychological distress. Other potential moderating variables might include population density (e.g., urban vs. rural) and the extent of resilience in the children’s personality (e.g., high vs. low resilient). Can you develop hypotheses for how the relationships among poverty, chaos, and psychological distress may differ based on these moderating variables?

Although correlational research is not an absolutely firm basis for making causal inferences, patterns of correlations observed in path analysis provide important clues for identifying causal relationships among variables. The next step for researchers who wish to make causal inferences is to conduct experiments, as described in Chapters 6–8. For example, a laboratory manipulation of chaos (e.g., unpredictable outcomes, noise) might cause different levels of distress among individuals from different economic backgrounds. This multimethod approach would help to provide converging evidence regarding the causal role of chaos in understanding the relationship between poverty and psychological adjustment.

Summary

Survey research provides an accurate and efficient means for describing people’s characteristics (e.g., demographic variables) and their thoughts, opinions, and feelings. In addition, predictive relationships can be identified by assessing the covariation (correlation) among naturally occurring variables. Surveys differ in purpose and scope, but they generally involve sampling. Results obtained for a carefully selected sample are used to describe the entire population of
interest. Surveys also involve the use of a predetermined set of questions, generally in the form of a questionnaire.

Sampling is a procedure whereby a specified number of elements are drawn from a sampling frame that represents an actual list of the possible elements in the population. Our ability to generalize from the sample to the population depends critically on the representativeness of the sample, that is, the extent to which the sample has the same characteristics as the population. Representativeness is best achieved by using probability sampling rather than nonprobability sampling. In simple random sampling, the most common type of probability sampling, every element is equally likely to be included in the sample. Stratified random sampling is used when analysis of subsamples is of interest.

There are four general survey methods: mail surveys, personal interviews, telephone interviews, and Internet surveys. Mail surveys avoid problems of interviewer bias and are especially well suited for examining personal or embarrassing topics. Potential problems due to response rate bias are a serious limitation of mail surveys. Personal interviews and phone surveys usually have higher response rates and provide greater flexibility. The phone survey is frequently used for brief surveys. Internet surveys are efficient and cost effective and open new opportunities for survey researchers; however, they are also prone to sample biases and raise both methodological and ethical issues primarily due to the lack of control over the research environment.

Survey research is carried out according to an overall plan called a research design. There are three survey-research designs: the cross-sectional design, the successive independent samples design, and the longitudinal design. Cross-sectional designs focus on describing the characteristics of a population or the differences between two or more populations at one point in time. Describing changes in attitudes or opinions over time requires the use of successive independent samples or longitudinal designs. The longitudinal design is generally preferred because it allows the researcher to assess changes for specific individuals and avoids the problem of noncomparable successive samples.

The primary instrument for survey research is the questionnaire. Questionnaires can be used to measure demographic variables and to assess people’s preferences or attitudes. In order to construct questionnaires that will yield reliable and valid measurements, researchers must decide what information should be sought and how to administer the questionnaire, and what order of questions will be most effective. Most importantly, questions must be written so that they are clear, specific, and as unambiguous as possible.

Survey results, like those of other verbal reports, can be accepted at face value unless there is reason to do otherwise, such as pressures on respondents to give socially desirable responses. People’s behavior does not always conform to what they say they would do, so survey research will never replace direct observation. However, survey research does provide an excellent way to begin to examine people’s attitudes and opinions.

The greatest challenge in interpreting correlational evidence is understanding the relationship between correlation and causality. A correlation between two variables is not sufficient evidence to demonstrate a causal relationship between the two variables. Correlational evidence can contribute, however, to
identifying causal relationships when used in combination with sophisticated statistical techniques (such as analyses of mediators and moderators in path analysis) and the multimethod approach.

KEY CONCEPTS

- correlational research 136
- population 139
- sample 140
- representativeness 140
- selection bias 140
- probability sampling 141
- nonprobability sampling 141
- simple random sampling 142
- stratified random sampling 143
- response rate bias 145
- interviewer bias 146
- cross-sectional design 151
- successive independent samples design 152
- longitudinal design 154
- questionnaire 158
- social desirability 168
- spurious relationship 170

REVIEW QUESTIONS

1. Briefly identify the goal of survey research and how correlations are used within survey research.
2. Describe the information you would examine to determine whether survey results are biased because the sponsoring agency of the survey has a vested interest in how the results turn out.
3. What two characteristics do surveys have in common regardless of the purpose for which the survey has been done?
4. Explain the relationship between the homogeneity of the population from which a sample is to be drawn and the size of a sample needed to ensure representativeness.
5. Explain why there is likely to be a serious threat to the interpretability of the results of a survey when a convenience sample is used.
6. Explain why you would choose to use a mail survey, personal interviews, telephone interviews, or an Internet survey for your survey-research project.
7. Explain why it is not possible to conclude a sample does not represent a population simply by knowing that the response rate was 50%.
8. What are the major advantages and disadvantages of Internet surveys?
9. Describe the relationship that would need to exist among the samples in a successive independent samples design in order to be able to interpret population changes in attitudes over time.
10. You are interested in assessing the direction and extent of change over time in the opinions of individual respondents. Identify the survey-research design you would choose, and explain why you would make this choice.
11. Describe one method for determining the reliability and one method for determining the validity of a self-report measure.
12. Describe three factors that affect the reliability of self-report measures in survey research.
13. How would you respond if someone told you that survey results were useless because people do not respond truthfully to questions on surveys?
14. Explain why “correlation does not imply causation,” and explain how correlational evidence can be useful in identifying potential causes of behavior.
15. Define mediator and moderator and provide an example of each.
174 PART II: Descriptive Methods

CHALLENGE QUESTIONS

1 Survey research is difficult to do well, and this can be especially the case when the topic is people’s sexual attitudes and practices. For a book focusing in part on women’s sexuality, an author mailed 100,000 questionnaires to women who belonged to a variety of women’s groups in 43 states. These groups ranged from feminist organizations to church groups to garden clubs. The author’s questionnaire included 127 essay questions. The author received responses from 4,500 women.

Findings in this survey included that 70% of respondents married 5 years or more reported having extramarital affairs and that 95% of respondents felt emotionally harassed by the men they love.

A The final sample in this study is large (4,500). Is this sufficient to ensure the representativeness of the sample? If not, what potential survey-research problem could lessen the sample’s representativeness?

B Is it possible on the basis of your response to Part A of this question to argue that any conclusions drawn by the author from her data are incorrect? What could you do to determine whether the results are correct?

2 With the increasing use of electronic communications and the Internet, a growing problem among youth is the experience of online harassment (cyberbullying). Estimates of the extent of cyberbullying vary. In one national (U.S.) survey conducted in 2005, professional interviewers used random-digit dialing to construct a sample of 1,500 English-speaking households with youth between the ages of 10 and 17 who use the Internet (Youth Internet Safety Survey). Youth were interviewed if their parents provided consent, and the youth assented. Nine percent of the youth in this sample reported being targets of online harassment within the past year. In another study conducted in 2008, 20,406 high school students (9th–12th grades) in the Boston metropolitan area completed an anonymous, paper-and-pencil survey about health and behavior topics one day in school (MetroWest Adolescent Health Survey). One question asked, “How many times has someone used the Internet, a phone, or other electronic communications to bully, tease, or threaten you?” In this sample, 15.8% of the students reported being victimized within the past year.

Decide whether each of the following statements is True or False, then explain your answer.

A The much larger sample size of the Boston survey indicates that 15.8% is a more reliable estimate of the amount of cyberbullying experienced by youth in the U.S. population.

B The different ages included in the two samples (10–17 and 9th–12th graders) may account for differences in the reported rate of cyberbullying.

C One reason youth reported more cyberbullying in the Boston study could be because an anonymous, self-report survey was used, compared to the telephone interview for the national sample.

D The findings for Internet bullying in the two surveys indicate that the Boston area has more Internet bullying than the overall national rate.

E The findings for the two surveys indicate that the percentage of cyberbullying increased nearly 7% points from 2005 to 2008.

3 The human resources department of a large corporation decides it wants to survey employees’ knowledge of procedures for requesting alternative work schedules (e.g., flex-time, maternity/paternity leave), as well as employees’ perceptions of the fairness of these corporate policies. The questionnaire also asked employees whether they have ever requested alternative scheduling.

A stratified random sample of 1,000 employees was drawn from payroll's list of 5,000 full-time employees. Strata were defined based on number of years employed with the corporation and were sampled proportionally. Via interoffice mail, employees in the sample were mailed a survey to be completed and returned anonymously by dropping it in a box. Questionnaires were returned by 600 employees. Results indicated that 200 (33%) of the respondents rated the corporate policies for alternative schedules as unfair.

A Was the initial sample of 1,000 employees likely to be representative of the population of 5,000 full-time employees? Why or why not?

B Suppose the head of the human resources department decides the sample was biased because of the response rate, and the perception by one-third of the sample respondents that the policies are unfair is an overestimate. Is this a correct decision? Why or why not?

C Suppose the following survey results were obtained:
Answer to Stretching Exercise I

Selection bias is present in all of these hypothetical examples. The best way to see this is to ask whether the conclusion reached by the individual conducting the survey is warranted, given the procedure used to collect the sample.

1 Regional conventions are likely to be attended mainly by psychologists in that area and may focus on particular divisions within the field of psychology (e.g., research psychologists, practicing clinical psychologists, forensic psychologists). We cannot fault the researcher’s method of sampling, but her conclusion is not warranted given that she sampled psychologists from only one gathering of psychologists. Psychologists who do not regularly attend conventions are not sampled. Her results may appropriately be related to “psychologists attending a regional convention” but not “all professional psychologists.”

2 The budding sports psychologist may be able to state what people attending this particular game think about the name change, but his procedure does not permit him to generalize his results to “local sports fans.” Local sports fans would include fans of various teams and even those who never go to games.

3 This newspaper reporter may have found out how the official voting results will turn out, but his results do not necessarily reflect the views of “students on campus.” A majority of those voting may have agreed with the proposal, but we do not know how many students voted or the opinions of students who did not vote. Some students may have refused to tell someone how they voted. This same problem arises when exit polls are taken during major political elections and pollsters state their findings describe an entire population of people.

4 Those attending the movie may be students who favor this method of awarding extra credit. We do not know the preferences of students who did not attend the movie.

Have you ever requested alternative scheduling?

<table>
<thead>
<tr>
<th></th>
<th>Yes (42%)</th>
<th>No (58%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Believe schedule policies are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfair</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Fair</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

In addition, data from the human resources department indicate that overall, 1,250 full-time employees (25%) have requested alternative work schedules. Based on these data, what do you conclude about whether the sample was biased?

A Describe the two survey research designs that could be used to answer the administrators’ questions. Outline how each of these designs could be implemented for this project, and describe the advantages and possible limitations of each design.

B Staff at the hospital suggest three approaches for the survey method: (1) select a random sample of patients from the list of patients and use a phone survey to administer the questionnaire; (2) send a letter to a random sample of the patients that includes a link to the questionnaire on the hospital website; and (3) post an announcement about the survey on the hospital website and ask patients to complete the questionnaire on the website. Describe the advantages and limitations of each approach, then provide your recommendation and rationale for the approach you think would be best.

C Write an example of a free-response (open-ended) and a closed question that could be used on the patient questionnaire. Use these examples to describe the advantages and disadvantages of each type of question.
Answer to Stretching Exercise II

1 The first student researcher is proposing a stratified random sample in which 100 “Greek” and 100 “independent” students are sampled. In this plan the equal-sized strata would have representative samples for each stratum. A potentially serious flaw of this plan is that the overall sample would not represent the proportions of Greeks and independents in the population (25% and 75%, respectively). This would result in a biased sample because Greeks would be systematically overrepresented in the survey. The second student researcher is proposing a simple random sample of 100 students from the campus population. While this is likely to lead to a more representative sample, it will probably result in too few respondents in the “Greek” category (we’d expect about 25 Greeks) to adequately represent their viewpoint.

2 A preferred sampling plan would use a stratified random sample in which the sample sizes for Greeks and independents are proportional to the population values. With 200 students in the sample, you would select 150 students from the sampling frame of independent students and 50 students from the sampling frame of Greek students.

Answer to Challenge Question 1

A In general, larger sample sizes do make it more likely that the sample will be representative. The problem in this study is that the final sample (though large) represents a low response rate from the original sample of 100,000 (4.5%). The low response rate and the topic of the survey make it likely that only women who were very motivated to complete the survey responded. It is unlikely the sample of 4,500 women represents the entire population of women.

B The low response rate makes it impossible to know whether the conclusions are correct or incorrect. There is at least one good way to determine if the results of this survey are correct. You would need to obtain from the literature the results of one or more surveys on women’s sexual attitudes and practices. It would be essential that these other surveys had used representative samples of women. Then you would compare the results of this survey with those of the other surveys. Only if the results of the present survey corresponded to those of the surveys with the representative samples would we consider the results of the present survey correct. Of course, you could also carry out your own survey, one that avoids the problems that are present in this survey, and determine whether your results are similar to those of this author-researcher!
PART THREE

Experimental Methods
CHAPTER SIX

Independent Groups Designs

CHAPTER OUTLINE

OVERVIEW
WHY PSYCHOLOGISTS CONDUCT EXPERIMENTS
LOGIC OF EXPERIMENTAL RESEARCH
RANDOM GROUPS DESIGN
An Example of a Random Groups Design
Block Randomization
Threats to Internal Validity
ANALYSIS AND INTERPRETATION OF EXPERIMENTAL FINDINGS
The Role of Data Analysis in Experiments
Describing the Results
Confirming What the Results Reveal
What Data Analysis Can’t Tell Us
ESTABLISHING THE EXTERNAL VALIDITY OF EXPERIMENTAL FINDINGS
MATCHED GROUPS DESIGN
NATURAL GROUPS DESIGN
SUMMARY
Overview

In Chapter 2 we introduced you to the four goals of research in psychology: description, prediction, explanation, and application. Psychologists use observational methods to develop detailed descriptions of behavior, often in natural settings. Survey research methods allow psychologists to describe people’s attitudes and opinions. Psychologists are able to make predictions about behavior and mental processes when they discover measures and observations that covary (correlations). Description and prediction are essential to the scientific study of behavior, but they are not sufficient for understanding the causes of behavior. Psychologists also seek explanation—the “why” of behavior. We achieve scientific explanation when we identify the causes of a phenomenon. Chapters 6, 7, and 8 focus on the best available research method for identifying causal relationships—the experimental method. We will explore how the experimental method is used to test psychological theories as well as to answer questions of practical importance.

As we have emphasized, the best overall approach to research is the multi-method approach. We can be more confident in our conclusions when we obtain comparable answers to a research question after using different methods. Our conclusions are then said to have convergent validity. Each method has different shortcomings, but the methods have complementary strengths that overcome these shortcomings. The special strength of the experimental method is that it is especially effective for establishing cause-and-effect relationships. In this chapter we discuss the reasons researchers conduct experiments and we examine the underlying logic of experimental research. Our focus is on a commonly used experimental design—the random groups design. We describe the procedures for forming random groups and the threats to interpretation that apply specifically to the random groups design. Then we describe the procedures researchers use to analyze and interpret the results they obtain in experiments, and also explore how researchers establish the external validity of experimental findings. We conclude the chapter with consideration of two additional designs involving independent groups: the matched groups design and the natural groups design.

Why Psychologists Conduct Experiments

- Researchers conduct experiments to test hypotheses about the causes of behavior.
- Experiments allow researchers to decide whether a treatment or program effectively changes behavior.

One of the primary reasons that psychologists conduct experiments is to make empirical tests of hypotheses they derive from psychological theories. For example, a prominent theory of stress and emotion proposes that keeping in thoughts and feelings about painful experiences takes a physical toll (Pennebaker, 1989). According to this “inhibition theory,” it’s physically stressful to keep these experiences to oneself.
In many experiments to test this theory, one group of participants was assigned to write about personal emotional events and another group to write about superficial topics. Consistent with the hypotheses derived from the inhibition theory, participants who wrote about emotional topics had better health outcomes than participants who wrote about superficial topics. Not all the results, however, were consistent with the inhibition theory. For example, students asked to dance expressively about an emotional experience did not experience the same health benefits as students who danced and wrote about their experience. Thus, expression wasn’t sufficient for positive outcomes. A further test of the theory demonstrated that cognitive changes that occur through writing about emotional experiences were critical in accounting for the positive health outcomes (Pennebaker & Francis, 1996).

Our brief description of testing the inhibition theory illustrates the general process involved when psychologists do experiments to test a hypothesis derived from a theory. If the results of the experiment are consistent with what is predicted by the hypothesis, then the theory receives support. On the other hand, if the results differ from what was expected, then the theory may need to be modified and a new hypothesis developed and tested in another experiment. Testing hypotheses and revising theories based on the outcomes of experiments can sometimes be a long and painstaking process, much like combining the pieces to a puzzle to form a complete picture. The self-correcting interplay between experiments and proposed explanations is a fundamental tool psychologists use to understand the causes of the ways we think, feel, and behave.

Well-conducted experiments also help to solve society’s problems by providing vital information about the effectiveness of treatments in a wide variety of areas. This role of experiments has a long history in the field of medicine (Thomas, 1992). For example, near the beginning of the 19th century, typhoid fever and delirium tremens were often fatal. The standard medical practice at that time was to treat these two conditions by bleeding, purging, and other similar “therapies.” In an experiment to test the effectiveness of these treatments, researchers randomly assigned one group to receive the standard treatment (bleeding, purging, etc.) and a second group to receive nothing but bed rest, good nutrition, and close observation. Thomas (1992) describes the results of this experiment as “unequivocal and appalling” (p. 9): The group given the standard medical treatment of the time did worse than the group left untreated. Treating such conditions using early-19th-century practices was worse than not treating them at all! Experiments such as these contributed to the insight that many medical conditions are self-limited: The illness runs its course, and patients recover on their own.

Logic of Experimental Research

- Researchers manipulate an independent variable in an experiment to observe the effect on behavior, as assessed by the dependent variable.
- Experimental control allows researchers to make the causal inference that the independent variable caused the observed changes in the dependent variable.
• Control is the essential ingredient of experiments; experimental control is gained through manipulation, holding conditions constant, and balancing.
• An experiment has internal validity when it fulfills the three conditions required for causal inference: covariation, time-order relationship, and elimination of plausible alternative causes.
• When confounding occurs, a plausible alternative explanation for the observed covariation exists, and therefore, the experiment lacks internal validity. Plausible alternative explanations are ruled out by holding conditions constant and balancing.

A true experiment involves the manipulation of one or more factors and the measurement (observation) of the effects of this manipulation on behavior. As you saw in Chapter 2, the factors the researcher controls or manipulates are called the independent variables. An independent variable must have at least two levels (also called conditions). One level may be considered the “treatment” condition and a second level the control (or comparison) condition. Often, more than two levels are used for additional comparisons between groups. The measures used to observe the effect (if any) of the independent variables are called dependent variables. One way to remember the distinction between these two types of variables is to understand that the outcome (dependent variable) depends on the independent variable.

Experiments are effective for testing hypotheses because they allow us to exercise a relatively high degree of control in a situation. Researchers use control in experiments to be able to state with confidence that the independent variable caused the observed changes in the dependent variable. The three conditions needed to make a causal inference are covariation, time-order relationship, and elimination of plausible alternative causes (see Chapter 2).

Covariation is met when we observe a relationship between the independent and dependent variables of an experiment. A time-order relationship is established when researchers manipulate an independent variable and then observe a subsequent difference in behavior (i.e., the difference in behavior is contingent on the manipulation). Finally, elimination of plausible alternative causes is accomplished through the use of control procedures, most importantly, through holding conditions constant and balancing. When the three conditions for a causal inference are met, the experiment is said to have internal validity, and we can say the independent variable caused the difference in behavior as measured by the dependent variable.

Random Groups Design

• In an independent groups design, each group of subjects participates in only one condition of the independent variable.
• Random assignment to conditions is used to form comparable groups by balancing or averaging subject characteristics (individual differences) across the conditions of the independent variable manipulation.
• When random assignment is used to form independent groups for the levels of the independent variable, the experiment is called a random groups design.
In an **independent groups design**, each group of subjects participates in a different condition of the independent variable. The most effective independent groups design is one that uses **random assignment** of subjects to conditions in order to form comparable groups prior to implementing the independent variable. When random assignment to conditions is used, the independent groups design is called a **random groups design**. The logic of the design is straightforward. The groups are formed so as to be similar on all important characteristics at the start of the experiment. Next, in the experiment itself, the groups are treated the same except for the level of the independent variable. Thus, any difference between the groups on the dependent variable must be caused by the independent variable.

An Example of a Random Groups Design

The logic of the experimental method and the application of control techniques that produce internal validity can be illustrated in an experiment investigating girls’ dissatisfaction with their body, conducted in the United Kingdom by Dittmar, Halliwell, and Ive (2006). Their goal was to determine whether exposure to very thin body images causes young girls to experience negative feelings about their own body. Many experiments conducted with adolescent and adult participants demonstrate that women report greater dissatisfaction about themselves after exposure to a thin female model compared to other types of images. Dittmar and her colleagues sought to determine whether similar effects are observed for girls as young as 5 years old. The very thin body image they tested was the Barbie doll. Anthropological studies that compare the body proportions of Barbie to actual women reveal that the Barbie doll has very unrealistic body proportions, yet Barbie has become a sociocultural ideal for female beauty (see Figure 6.1).

In the experiment small groups of young girls (5½–6½ years old) were read a story about “Mira” as she went shopping for clothes and prepared to go to a birthday party. As they heard the story, the girls looked at picture books with six scenes related to the story. In one condition of the experiment, the picture books had images of Barbie in the scenes of the story (e.g., shopping for a party outfit, getting ready for the party). In a second condition the picture books had similar scenes but the figure pictured was the “Emme” doll. The Emme fashion doll is an attractive doll with more realistic body proportions, representing a U.S. dress size 16 (see Figure 6.2). Finally, in the third condition of the experiment the picture books did not depict Barbie or Emme (or any body) but, instead, showed neutral images related to the story (e.g., windows of clothes shops, colorful balloons). These three versions of the picture books (Barbie, Emme, neutral) represent three levels of the independent variable that was manipulated in the experiment. Because different groups of girls participated in each level of the independent variable, the experiment is described as an independent groups design.

1Another term for independent groups design is *between-subjects design*. Both terms are used to describe studies in which groups of participants are compared and there is no overlap of participants in the groups of the study (i.e., each participant is in only one condition).
Manipulation Dittmar et al. (2006) used the control technique of *manipulation* to test their hypotheses about girls’ body dissatisfaction. The three conditions of the independent variable allowed these researchers to make comparisons relevant to their hypotheses. If they tested only the Barbie condition, it would be impossible to determine whether those images influenced girls’ body dissatisfaction in any way. Thus, the neutral-image condition created a comparison—a way to see if the girls’ body dissatisfaction differed depending on whether they looked at a thin ideal vs. neutral images. The Emme condition added an important comparison. It is possible that *any* images of bodies might influence girls’ perceptions of themselves. These researchers tested the hypothesis that only *thin* body ideals, as represented by Barbie, would cause body dissatisfaction.

At the end of the story, the young girls turned in their picture books and completed a questionnaire designed for their age level. Although the researchers used a number of measures designed to assess the girls’ satisfaction with their body, we will focus on one measure, the Child Figure Rating Scale. This scale

FIGURE 6.1 In the United States, 99% of young girls aged 3–10 have at least one Barbie, and the typical young girl has eight Barbie dolls (Rogers, 1999).
has two rows of seven line drawings of girls’ body shapes ranging from very thin to very overweight. Each girl was asked first to color in the figure in the top row that most looks like her own body right now (a measure of perceived actual body shape). Then, on a second row of the same figures, the girls were asked to color in the figure that shows the way they most want to look (ideal body shape). Girls were told they could pick any of the figures and that they could choose the same figure in each row. A body shape dissatisfaction score, the dependent variable, was computed by counting the number of figures between each girl’s actual shape and her ideal shape. A score of zero indicated no body shape dissatisfaction, a negative score indicated a desire to be thinner, and a positive score indicated a desire to be bigger.

The results of this experiment were clear: Young girls exposed to the images of Barbie were more dissatisfied with their body shape than were girls who were exposed to the Emme images or to the neutral images. The average body-dissatisfaction score for the 20 girls in the Emme condition and for the 20 girls in the neutral-image condition was zero. In contrast, the average dissatisfaction score for the 17 girls in the Barbie-image condition was -2.76, indicating

FIGURE 6.2 The “Emme” doll was introduced in 2002 to promote a more realistic body image for young girls. The doll is based on the U.S. supermodel named Emme.
their desire to be thinner. Through the control technique of manipulation, the first two requirements for causal inference were met in this experiment: (1) Differences in the girls’ body dissatisfaction covaried with the conditions of the experiment and (2) body dissatisfaction came after viewing the images (time-order relationship). The third requirement for causal inference, elimination of alternative explanations, was accomplished in this experiment through holding conditions constant and balancing.

Holding Conditions Constant Several factors that could have affected the girls’ attitudes toward their body were kept the same across the three conditions of the experiment. All of the girls heard the same story about shopping and attending a birthday party, and they looked at their picture books for the same amount of time. They all received the same instructions throughout the experiment and received the exact same questionnaire at the conclusion. Researchers use holding conditions constant to make sure that the independent variable is the only factor that differs systematically across the groups.

If the three groups had differed on a factor other than the picture books, then the results of the experiment would have been uninterpretable. Suppose the participants in the Barbie condition had heard a different story, for example, a story about Barbie being thin and popular. We wouldn’t know whether the observed difference in the girls’ body dissatisfaction was due to viewing the images of Barbie or to the different story. When the independent variable of interest and a different, potential independent variable are allowed to covary, a confounding is present. When there are no confoundings, an experiment has internal validity.

Holding conditions constant is a control technique that researchers use to avoid confoundings. A factor that is held constant, such as the story the girls heard, does not change in the experiment. Because it is constant, it cannot possibly covary with the manipulated independent variable, nor the dependent variable. Thus, researchers can rule out factors that are held constant as potential causes for the observed results.

It is important to recognize, however, that we choose to control only those factors we think might influence the behavior we are studying—what we consider plausible alternative causes. For instance, the story the girls heard in each condition was held constant, but the researchers probably didn’t hold constant factors such as the room temperature because room temperature is unlikely to affect body image (at least when varying only a few degrees). Nevertheless, we should remain alert to the possibility that there may be confounding factors in our experiments whose influence we had not anticipated or considered.

Balancing Clearly, one key to the logic of the experimental method is forming comparable (similar) groups at the start of the experiment. The participants in each group should be similar in terms of various characteristics such as their personality, intelligence, and so forth (also known as individual differences). The control technique of balancing is required because these factors often cannot be held constant. The goal of random assignment is to establish equivalent groups of participants by balancing, or averaging, individual differences across the
conditions. The random groups design used by Dittmar et al. (2006) may be described as follows:

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>X₁</td>
<td>O₁</td>
</tr>
<tr>
<td>R₂</td>
<td>X₂</td>
<td>O₁</td>
</tr>
<tr>
<td>R₃</td>
<td>X₃</td>
<td>O₁</td>
</tr>
</tbody>
</table>

where R₁, R₂, and R₃ refer to the random assignment of subjects to the three independent conditions of the experiment; X₁ is one level of an independent variable (e.g., Barbie), X₂ is a second level of the independent variable (e.g., Emme), and X₃ is a third level of the independent variable (e.g., neutral images). An observation of behavior (O₁) in each group is then made.

In the body image experiment, if participants viewing the Barbie images were shown to be more overweight or to own more Barbie dolls than participants viewing the Emme or neutral images, a plausible alternative explanation for the findings exists. It’s possible that being overweight or having more Barbie dolls, not the version of the images, could explain why participants in the Barbie condition experienced greater body dissatisfaction. (In the language of the researcher, a confounding would be present.) Similarly, individual differences in the girls’ body dissatisfaction before the experiment was conducted could be a reasonable alternative explanation for the study’s findings. When random assignment is used to balance these individual differences across the groups, however, we can logically rule out the alternative explanation that any differences we obtain between the groups on the dependent variable are due to characteristics of the participants.

When we balance a factor such as body weight, we make the three groups equivalent in terms of their average body weight. Note that this differs from holding body weight constant, which would require that all of the girls in the study have the same body weight. Similarly, balancing the number of Barbie dolls owned by girls in the three groups would mean that the average number of dolls owned in the three groups is the same, not that the number of dolls owned by each girl is held constant at some number. The beauty of random assignment is that all individual differences are balanced, not just the ones we’ve mentioned. Therefore, we can rule out alternative explanations due to any individual differences among participants.

In summary, Dittmar and her colleagues concluded that exposure to thin body images, such as Barbie, causes young girls to be dissatisfied with their own bodies. They were able to make this conclusion because they

- manipulated an independent variable that varied the images girls viewed,
- eliminated other plausible explanations through holding relevant conditions constant, and
- balanced individual differences among the groups through random assignment to conditions.

Box 6.1 summarizes how the random groups design was used to study young girls’ body image.
CHAPTER 6: Independent Groups Designs

Overview of experimental procedure. Young girls (ages 5½–6½) were assigned to look at one of three different picture books while listening to a story. After viewing the books, participants answered questions about their body image.

Independent variable. Version of picture book viewed by participants (Barbie, Emme, or neutral images).

Dependent variable. Body dissatisfaction measured by assessing the difference between girls’ actual body image and their ideal body image.

Explanation of control procedures

Holding conditions constant. Girls in the three conditions listened to the same story, were given the same instructions, and answered the same questions at the conclusion.

Balancing. Individual differences among the girls were balanced through random assignment to different experimental conditions.

Explanation of experimental logic providing evidence for causality

Covariation. The girls’ body dissatisfaction was found to vary with experimental condition.

Time-order relationship. The version of the picture book was manipulated prior to measuring body dissatisfaction.

Elimination of plausible alternative causes. Control procedures of holding conditions constant and balancing individual differences through random assignment protected against confoundings.

Conclusion. Exposure to very thin body images (the Barbie picture books) caused body dissatisfaction.

(Based on Dittmar, Halliwell, & Ive, 2006)

BOX 6.1

SUMMARY OF GIRLS’ BODY IMAGE EXPERIMENT

In this exercise you are to respond to the questions that appear after this brief description of an experiment.

Bushman (2005) examined whether people’s memory for advertisements is affected by the type of television program they watch. Participants (N = 336, ages 18–54) were randomly assigned to watch one of four types of television programs: violent (e.g., Cops), sexually explicit (e.g., Sex and the City), violence and sex (e.g., CSI Miami), or neutral (e.g., America’s Funniest Animals). Within each TV program were embedded the same 12 (30-second) ads. To make sure participants were likely to have equal exposure to the brands represented in the ads, the researchers selected relatively unfamiliar brands (e.g., “Dermoplast,” “José Olé”). Three commercial breaks, each with four ads, were placed at approximately 12, 24, and 36 minutes into each program. Two random orders of ads were used. Participants were tested in small groups, and each session was conducted in a comfortable setting in which participants sat in padded chairs and were provided soft drinks and snacks. After they watched the program, participants received surprise memory tests for the content of the ads. The results indicated that memory for the advertised brands was poorer when the television program contained violence or sex. Memory impairment for ads was greatest for programs that contained sexually explicit material.

1. What aspect of the experiment did Bushman (2005) control by using manipulation?
2. What aspect of the experiment did Bushman control by holding conditions constant?
3. What aspect of the experiment did Bushman control by using balancing?

Block Randomization

- Block randomization balances subject characteristics and potential confoundings that occur during the time in which the experiment is conducted, and it creates groups of equal size.

A common procedure for carrying out random assignment is block randomization. First, let us describe exactly how block randomization is carried out, and then we will look at what it accomplishes. Suppose we have an experiment with five conditions (labeled, for convenience, as A, B, C, D, and E). One “block” is made up of a random order of all five conditions:

One block of conditions → Random order of conditions
A B C D E C A E B D

In block randomization, we assign subjects to conditions one block at a time. In our example with five conditions, five subjects would be needed to complete the first block with one subject in each condition. The next five subjects would be assigned to one of each of the five conditions to complete a second block, and so on. If we want to have 10 subjects in each of five conditions, then there would be 10 blocks in the block-randomized schedule. Each block would consist of a random arrangement of the five conditions. This procedure is illustrated below for the first 11 participants.

<table>
<thead>
<tr>
<th>10 Blocks</th>
<th>Participants</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) C A E B D</td>
<td>1) Cara</td>
<td>→ C</td>
</tr>
<tr>
<td>2) E C D A B</td>
<td>2) Andy</td>
<td>→ A</td>
</tr>
<tr>
<td>3) D B E A C</td>
<td>3) Jacob</td>
<td>→ E</td>
</tr>
<tr>
<td>4) B A C E D</td>
<td>4) Molly</td>
<td>→ B</td>
</tr>
<tr>
<td>5) A C E D B</td>
<td>5) Emily</td>
<td>→ D</td>
</tr>
<tr>
<td>6) A D E B C</td>
<td>6) Eric</td>
<td>→ E</td>
</tr>
<tr>
<td>7) B C A D E</td>
<td>7) Anna</td>
<td>→ C</td>
</tr>
<tr>
<td>8) D C A E B</td>
<td>8) Laura</td>
<td>→ D</td>
</tr>
<tr>
<td>9) E D B C A</td>
<td>9) Sarah</td>
<td>→ A</td>
</tr>
<tr>
<td>10) C E B D A</td>
<td>10) Lisa</td>
<td>→ B</td>
</tr>
<tr>
<td>11) Tom</td>
<td>→ D</td>
<td></td>
</tr>
</tbody>
</table>

and so on for 50 participants

There are several advantages when block randomization is used to randomly assign subjects to groups. First, block randomization produces groups of equal size. This is important because the number of observations in each group affects the reliability of the descriptive statistics for each group, and it is desirable to have the reliability of these measures comparable across groups. Second, block randomization controls for time-related variables. Because experiments often take a substantial amount of time to complete, some participants can be affected by events that occur during the time the experiment is conducted. In block randomization, every condition is tested in each block so these time-related variables are controlled.
variables are balanced across the conditions of the experiment. If, for example, a traumatic event occurs on a college campus where an experiment is being conducted, the number of participants who experienced the event will be equivalent in each condition if block randomization is used. We assume, then, that the effects of the event on participants’ performance will be equivalent, or averaged, across the conditions. Block randomization also works to balance other time-related variables, such as changes in experimenters or even changes in the populations from which subjects are drawn. For example, a perfectly acceptable experiment could be done drawing students from both fall and spring semester classes if block randomization is used. The beauty of block randomization is that it will balance (or average) any characteristics of participants (including the effects of time-related factors) across the conditions of an experiment.

If you want to practice the procedure of block randomization, you can do Challenge Question 1A at the end of this chapter.

Threats to Internal Validity

- Randomly assigning intact groups to different conditions of the independent variable creates a potential confounding due to preexisting differences among participants in the intact groups.
- Block randomization increases internal validity by balancing extraneous variables across conditions of the independent variable.
- Selective subject loss, but not mechanical subject loss, threatens the internal validity of an experiment.
- Placebo control groups are used to control for the problem of demand characteristics, and double-blind experiments control both demand characteristics and experimenter effects.

We’ve seen that *internal validity* is the degree to which differences in performance on a dependent variable can be attributed clearly and unambiguously to an effect of an independent variable, as opposed to some other uncontrolled variable. These uncontrolled variables are often referred to as *threats to internal validity*. These threats are potential alternative explanations for a study’s findings. Researchers control threats to internal validity in order to make a clear cause-and-effect inference about an independent variable. We next describe several problems in experimental research that can result in threats to internal validity, and methods to control these threats.

Testing Intact Groups Random assignment is used to form comparable groups in the random groups design. There are times, however, when noncomparable groups are formed even when random assignment appears to have been used. This problem occurs when *intact groups* (not individuals) are randomly assigned to the conditions of an experiment. Intact groups are formed prior to the start of the experiment. For example, the different sections of an introductory psychology course are intact groups. Students are not randomly assigned to different sections of introductory psychology (although sometimes scheduling classes seems random!). Students often choose to be in a particular section because of
the time the class meets, the instructor, friends who will be in the class, and any number of other factors. If a researcher were to randomly assign different sections to levels of an independent variable, a confounding due to testing intact groups could occur.

The source of the confounding due to noncomparable groups arises when individuals differ systematically across the intact groups. For example, students who choose to take an 8 a.m. section may differ from students who prefer a 2 p.m. section. Random assignment of these intact groups to experimental conditions is simply not sufficient to balance the systematic differences among the intact groups. These systematic differences between the two intact groups are almost guaranteed to threaten the internal validity of the experiment. The solution to this problem is simple—do not use intact groups in a random groups design.

Balancing Extraneous Variables A number of factors in an experiment may vary as a result of practical considerations when carrying out the study. For example, to complete an experiment more quickly, a researcher might decide to have several different experimenters test small groups of participants. The sizes of the groups and the experimenters themselves become potentially relevant variables that could confound the experiment. For example, if all the individuals in the experimental group were tested by one experimenter and all of those in the control group were tested by another experimenter, the levels of the intended independent variable would become confounded with the two experimenters. We would not be able to determine whether an observed difference between the two groups was due to the independent variable or to the fact that different experimenters tested participants in the experimental and control groups.

Potential variables that are not directly of interest to the researcher but may be sources of confounding are called extraneous variables. But don’t let the term fool you! An experiment confounded by an extraneous variable is no less confounded than if the confounding variable were of considerable inherent interest. For example, students who volunteer for research participation early in an academic term are more academically oriented and are more likely to have an internal locus of control (i.e., they emphasize their own responsibility, rather than external factors, for their actions) than students who volunteer late in a term (Evans & Donnerstein, 1974). If all of the participants in the experimental condition were tested at the beginning of the term and participants in the control condition at the end of the term, the independent variable would be confounded with characteristics of the participants.

Block randomization controls extraneous variables by balancing them across groups. All that is required is that entire blocks be tested at each level of the extraneous variable. For example, if there were four different experimenters, entire blocks of conditions would be assigned to each experimenter. Because each block contains all the conditions of the experiment, this strategy guarantees that each condition will be tested by each experimenter. Usually, we would assign the same number of blocks to each experimenter, but this is not essential. What
is essential is that entire blocks be tested at each level of the extraneous variable, which, in this case, is the four experimenters. The balancing act can become a bit tricky when there are several extraneous variables, but careful advance planning can avoid confounding by such factors.

Subject Loss The logic of the random groups design requires that the groups in an experiment differ only because of the levels of the independent variable. Forming comparable (i.e., similar) groups of subjects at the beginning of an experiment is an essential characteristic of the random groups design. It is equally important that the groups be comparable except for the independent variable at the end of the experiment. When subjects begin an experiment but fail to complete it successfully, the internal validity of the experiment can be threatened. It is important to distinguish between two ways in which subjects can fail to complete an experiment: mechanical subject loss and selective subject loss.

Mechanical subject loss occurs when a subject fails to complete the experiment because of an equipment failure (in this case, the experimenter is considered part of the equipment). Mechanical subject loss can occur if a computer crashes, or if the experimenter reads the wrong set of instructions, or if someone inadvertently interrupts an experimental session. Mechanical loss is a less critical problem than selective subject loss because the loss is unlikely to be related to any characteristic of the subject. As such, mechanical loss should not lead to systematic differences between the characteristics of the subjects who successfully complete the experiment in the different conditions of the experiment. Mechanical loss can also reasonably be understood as the result of chance events that should occur equally across groups. Hence, internal validity is not typically threatened when subjects must be excluded from the experiment due to mechanical loss. When mechanical subject loss occurs, it should be documented. The name or subject number of the dropped subject and the reason for the loss should be recorded. The lost subject can then be replaced by the next subject tested.

Selective subject loss is a far more serious matter. **Selective subject loss** occurs (1) when subjects are lost differentially across the conditions of the experiment; (2) when some characteristic of the subject is responsible for the loss; and (3) when this subject characteristic is related to the dependent variable used to assess the outcome of the study. Selective subject loss destroys the comparable groups that are essential to the logic of the random groups design and can thus render the experiment uninterpretable.

We can illustrate the problems associated with selective subject loss by considering a fictitious but realistic example. Assume the directors of a fitness center decide to test the effectiveness of a 1-month fitness program. Eighty people volunteer for the experiment, and they randomly assign 40 to each of two groups. Random assignment to conditions creates comparable groups at the start of the experiment by balancing individuals’ characteristics such as weight, fitness level, motivation, and so on across the two groups. Members of the control group are simply asked to take a fitness test at the end of the month. Those in the experimental group participate in a vigorous fitness program for 1 month.
prior to the test. Assume 38 control participants show up for the fitness test at the end of the month, but only 25 of the experimental participants stay with the rigorous fitness program for the full month. Also assume that the average fitness score for the 25 people remaining in the experimental group is significantly higher than the average score for the people in the control group. The directors of the fitness center then make the claim, “A scientifically based research study has shown that our program leads to better fitness.”

Do you think the fitness center’s claim is justified? It’s not. This hypothetical study represents a classic example of selective subject loss, so the results of the study can’t be used to support the fitness center’s claim. The loss occurred differentially across conditions; participants were lost mainly from the experimental group. The problem with differential loss is not that the groups ended up different in size. The results would have been interpretable if 25 people had been randomly assigned to the experimental group and 38 to the control group and all the individuals had completed the experiment. Rather, selective subject loss is a problem because the 25 experimental participants who completed the fitness program are not likely to be comparable to the 38 control participants. The 15 experimental participants who could not complete the rigorous program are likely to have been less fit (even before the program began) than the 25 experimental participants who completed the program. The selective loss of participants in the experimental group likely destroyed the comparable groups that were formed by random assignment at the beginning of the experiment. In fact, the final fitness scores of the 25 experimental participants might have been

STRETCHING EXERCISE II

In this exercise you will need a deck of cards. Set aside the face cards (Jack, Queen, King) and use the cards 1–10 (assign a value of one to the Aces). Shuffle the cards well.

In order to get a feel for how random assignment to conditions works to create equivalent groups, deal the shuffled (randomized) cards into two piles, each with 20 cards. One pile will represent “participants” randomly assigned to an experimental condition and the second pile will represent participants randomly assigned to a control condition. Assume the value on each card indicates participants’ score (1–10) on an individual differences measure, such as memory ability.

1. Compute a mean score for participants in each condition (pile) by summing the value on each card and dividing by 20. Are the two groups equivalent in terms of their average memory ability?

 To understand the problems associated with selective subject loss, assume that participants with low memory ability (values of 1 and 2) are unable to complete an experimental task and drop out of the experimental condition. To simulate this, remove cards with values of 1 and 2 from the pile that represents your experimental condition.

2. Compute a new mean score for the pile in the experimental condition. Following selective subject loss, how do the mean memory ability scores for the two groups compare? What does this indicate for the equivalence of the two groups initially formed using random assignment?

3. For each “participant” (card) dropped from the experimental group, remove a comparable card from the control group. Note that you may not have exact matches, and you may have to substitute a “1” for a “2” or vice versa. Compute a new mean for the control group. Did this procedure restore the initial equivalence of the two groups?

4. Shuffle the 40 cards again and deal the cards into four groups. Compute a mean for each pile of 10 cards. With fewer “participants” in each group, did randomization (shuffling) lead to equivalent groups?
higher than the average in the control group even if they had not participated in the fitness program because they were more fit when they began! Thus, the subject loss in this experiment meets the other two conditions for selective subject loss. Namely, the loss is likely due to a characteristic of the participants— their original level of fitness—and this characteristic is relevant to the outcome of the study (see Figure 6.3).

If selective subject loss is not identified until after the experiment is completed, little can be done except to chalk up the experience of having conducted an uninterpretable experiment. Preventive steps can be taken, however, when researchers realize in advance that selective loss may be a problem. One alternative is to administer a pretest and screen out subjects who are likely to be lost. For example, in the exercise study, an initial test of fitness could have been given, and only those participants who scored above some minimal level would have participated in the experiment. Screening participants in this way would involve a potential cost. The results of the study would likely apply only for people above the minimal fitness level (an issue of external validity). This cost may be well worth paying because an interpretable study of limited generality is still preferable to an uninterpretable study.

There is a second preventive approach that researchers can use when facing the possibility of selective subject loss. Researchers can give all subjects a pretest before randomly assigning participants to conditions. Then, if a subject is lost from the experimental group, a subject with a comparable pretest score can be

FIGURE 6.3 Many people who begin a rigorous exercise program fail to complete it. In a sense, only the “fittest” survive, a situation that could cause problems of interpretation if different types of fitness programs were being compared.
dropped from the control group. In a sense, this approach tries to restore the initial comparability of the groups. Researchers must be able to anticipate possible factors that could lead to selective subject loss, and they must make sure their pretest measures these factors.

Demand Characteristics and Experimenter Effects The final challenge to internal validity we will describe arises because of expectations held by both participants and experimenters. Demand characteristics represent one possible source of bias due to participants’ expectations (Orne, 1962). Demand characteristics refer to the cues and other information that participants use to guide their behavior in a psychological study (see Chapter 4). For example, research participants who know they have been given alcohol in an experiment may expect to experience certain effects, such as relaxation or giddiness. They may then behave consistent with these expectations rather than in response to the effects of the alcohol per se.

Potential biases also can arise due to the expectations of the experimenters. The general term used to describe these biases is experimenter effects (Rosenthal, 1963, 1994a). Experimenter effects may be a source of confounding if experimenters treat subjects differently in the different groups of the experiment in ways other than those required to implement the independent variable. In an experiment involving alcohol, for instance, experimenter effects could occur if the experimenters read the instructions more slowly to participants who had been given alcohol than to those who had not. Experimenter effects also can occur when experimenters make biased observations based on the treatment a subject has received. For example, biased observations might arise in the alcohol study if the experimenters were more likely to notice unusual motor movements or slurred speech among the “drinkers” (because they “expect” drinkers to behave this way). (See discussion of expectancy effects in Chapter 4.)

Researchers can never completely eliminate the problems of demand characteristics and experimenter effects, but there are special research designs that control these problems. Researchers use a placebo control group as one way to control demand characteristics. A placebo (from the Latin word meaning “I shall please”) is a substance that looks like a drug or other active substance but is actually an inert, or inactive, substance. Some research indicates that placebos can produce therapeutic effects, likely based on participants’ expectations for an effect of a “drug” (e.g., Kirsch & Sapirstein, 1998). Researchers test the effectiveness of a treatment by comparing it to a placebo. Both groups have the same “awareness” of taking a drug and, therefore, similar expectations for a therapeutic effect. That is, the demand characteristics are similar for the groups—participants in both groups expect to experience effects of a drug. Any differences between the experimental groups and the placebo control group could legitimately be attributed to the actual effect of the drug taken by the experimental participants, and not the participants’ expectations about receiving a drug.

The use of placebo control groups in combination with a double-blind procedure can control for both demand characteristics and experimenter effects. In
a **double-blind procedure**, both the participant and the observer are blind to (unaware of) what treatment is being administered. In an experiment testing the effectiveness of a drug treatment, two researchers would be needed to accomplish the double-blind procedure. The first researcher would prepare the drug capsules and code each capsule in some way; the second researcher would distribute the drugs to the participants, recording the code for each drug as it was given to an individual. This procedure ensures there is a record of which drug each person received, but neither the participant nor the experimenter who actually administers the drugs (and observes their effects) knows which treatment the participant received. Thus, experimenter expectancies about the effects of the treatment are controlled because the researcher who makes the observations is unaware of who received the treatment and who received the placebo. Similarly, demand characteristics are controlled because participants remain unaware of whether they received the drug or placebo.

Experiments that involve placebo control groups are a valuable research tool for assessing the effectiveness of a treatment while controlling for demand characteristics. The use of placebo control groups, however, does raise special ethical concerns. The benefits of the knowledge gained using placebo control groups must be evaluated in light of the risks involved when research participants who expect to receive a drug may instead receive a placebo. Typically, the ethics of this procedure are addressed in the informed consent procedure prior to the start of the experiment. Participants are told they may receive a drug or a placebo. Only individuals who consent to receiving either the placebo or the drug participate in the research. Should the experimental drug prove effective, then the researchers are ethically required to offer the treatment to participants in the placebo condition.

ANALYSIS AND INTERPRETATION OF EXPERIMENTAL FINDINGS

The Role of Data Analysis in Experiments

- Data analysis and statistics play a critical role in researchers’ ability to make the claim that an independent variable has had an effect on behavior.
- The best way to determine whether the findings of an experiment are reliable is to do a replication of the experiment.

A good experiment, as is true of all good research, begins with a good research question. Researchers then use control techniques to design and implement an experiment that will allow them to gather interpretable evidence to answer their research question. However, simply conducting a good experiment is not sufficient. Researchers must also present the evidence in a convincing way to demonstrate that their findings support their conclusions. Data analysis and statistics play a critical role in the analysis and interpretation of experimental evidence.

Robert Abelson, in his book *Statistics as Principled Argument* (1995), suggests that the primary goal of data analysis is to determine whether observations support a claim about behavior. That is, can we “make the case” for a conclusion based on the evidence gathered in an experiment? We provide a more complete
description of how researchers use data analysis and statistics in Chapters 11 and 12. Here we will introduce the central concepts of data analysis that apply to the interpretation of the results of experiments. But first let us mention one very important way that researchers can make their case concerning the results of their research.

The best way to determine whether the findings obtained in an experiment are reliable (consistent) is to replicate the experiment and see if the same outcome is obtained. **Replication** means repeating the procedures used in a particular experiment in order to determine whether the same results will be obtained a second time. As you might imagine, an exact replication is almost impossible to carry out. The subjects tested in the replication will be different from those tested in the original study; the testing rooms and experimenters also may be different. Nevertheless, replication is still the best way to determine whether a research finding is reliable. Replication is so important for establishing the reliability of psychological findings that an entire special issue of the respected *Perspectives on Psychological Science* addressed this topic (Pashler & Wagenmakers, 2012).

If scientists required, however, that the reliability of every finding be established by replication, the process would be cumbersome and inefficient. Participants for experiments are a scarce resource, and doing a replication means we won’t be doing an experiment to ask new and different questions about behavior. Data analysis and statistics provide researchers with an alternative to replication for determining whether the results of a single experiment are reliable and whether a claim about the effect of an independent variable is justified.

Data analysis of an experiment involves three stages: (1) getting to know the data, (2) summarizing the data, and (3) confirming what the data reveal. In the first stage we try to find out what is going on in the data set, look for errors, and make sure the data make sense. In the second stage we use descriptive statistics and graphical displays to summarize what was found. In the third stage we seek evidence for what the data tell us about behavior. In this stage we make our conclusions about the data using various statistical techniques.

In the following sections we provide only a brief introduction to these stages of data analysis. A more complete introduction to data analysis is found in Chapters 11 and 12 (see especially Box 11.1). These later chapters will become particularly important if you need to read and interpret the results of a psychology experiment published in a scientific journal or if you carry out your own psychology experiment.

We will illustrate the process of data analysis by examining the results of an experiment that investigated the effects of rewards and punishments while participants played violent video games. Carnagey and Anderson (2005) noted that a large body of research evidence demonstrates that playing violent video
games increases aggressive affect, cognitions, and behavior. They wondered, however, whether the effects of violent video games would differ when players are punished for violent game actions compared to when the same actions are rewarded (as in most video games). One hypothesis formed by Carnagey and Anderson was that when violent video-game actions are punished, players would be less aggressive. Another hypothesis, however, stated that when punished for their violent actions, players would become frustrated and therefore more aggressive.

In these studies, undergraduate participants played one of three versions of the same competitive race-car video game (“Carmageddon 2”) in a laboratory setting. In the reward condition, participants were rewarded (gained points) for killing pedestrians and race opponents (this is the unaltered version of the game). In the punishment condition, the video game was altered so that participants lost points for killing or hitting opponents. In a third condition, the game was altered to be nonviolent and participants gained points for passing checkpoints as they raced around the track (all pedestrians were removed and race opponents were programmed to be passive).

Carnagey and Anderson (2005) reported the results of three experiments in which participants were randomly assigned to play one of the three versions of the video game. The primary dependent variables were measures of participants’ hostile emotions (Experiment 1), aggressive thinking (Experiment 2), and aggressive behaviors (Experiment 3). Across the three studies, participants who were rewarded for violent actions in the video game were higher in aggressive emotions, cognitions, and behavior compared to the punishment and nonviolent game conditions. Punishing aggressive actions in the video game caused participants to experience greater hostile emotions (similar to the reward condition) relative to nonviolent play, but did not cause them to experience increased aggressive cognitions and behavior.

In order to illustrate the process of data analysis, we will examine more closely Carnagey and Anderson’s results for aggressive cognitions (Experiment 2). After playing one of the three video-game versions, participants completed a word fragment task in which they were asked to complete as many words (out of 98) as they could in 5 minutes. Half of the word fragments had aggressive possibilities. For example, the word fragment “K I ___ ___” could be completed as “kiss” or “kill” (or other possibilities). Aggressive cognition was operationally defined as the proportion of word fragments a participant completed with aggressive words. For example, if a participant completed 60 of the word fragments in 5 minutes and 12 of those expressed aggressive content, the participant’s aggressive cognition score would be .20 (i.e., \(\frac{12}{60} = .20 \)).

Describing the Results

- The two most common descriptive statistics that are used to summarize the results of experiments are the mean and standard deviation.
- Measures of effect size indicate the strength of the relationship between the independent and dependent variables, and they are not affected by sample size.
• One commonly used measure of effect size, d, examines the difference between two group means relative to the average variability in the experiment.

• Meta-analysis uses measures of effect size to summarize the results of many experiments investigating the same independent variable or dependent variable.

Data analysis should begin with a careful inspection of the data set with special attention given to possible errors or anomalous data points. Techniques for inspecting the data (“getting to know the data”) are described in Chapter 11. The next step is to describe what was found. At this stage the researcher wants to know “What happened in the experiment?” To begin to answer this question, researchers use descriptive statistics. The two most commonly reported descriptive statistics are the mean (a measure of central tendency) and the standard deviation (a measure of variability). The means and standard deviations for aggressive cognition in the video-game experiment are presented in Table 6.1. The means show that aggressive cognition was highest in the reward condition (.210) and lowest in the nonviolent condition (.157). Aggressive cognition in the punishment condition (.175) fell between the nonviolent and reward conditions. We can note that for participants in the reward condition, approximately 1 in 5 words was completed with aggressive content (remember, though, that only half of the word fragments had aggressive possibilities).

In a properly conducted experiment, the standard deviation in each group should reflect only individual differences among the subjects who were randomly assigned to that group. Subjects in each group should be treated in the same way, and the level of the independent variable to which they’ve been assigned should be implemented in the same way for each subject in the group. The standard deviations shown in Table 6.1 indicate that there was variation around the mean in each group and that the variation was about the same in all three groups.

One important question researchers ask when describing the results of an experiment is how large an effect the independent variable had on the dependent variable. Measures of effect size can be used to answer this question because they indicate the strength of the relationship between the independent and dependent variables. One advantage of measures of effect size is that they are not influenced by the size of the samples tested in the experiment. Measures of effect size take into account more than the mean difference between two conditions.

<table>
<thead>
<tr>
<th>Video-Game Version</th>
<th>Mean</th>
<th>SD</th>
<th>.95 Confidence Interval*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reward</td>
<td>.210</td>
<td>.066</td>
<td>.186–.234</td>
</tr>
<tr>
<td>Punishment</td>
<td>.175</td>
<td>.046</td>
<td>.151–.199</td>
</tr>
<tr>
<td>Nonviolent</td>
<td>.157</td>
<td>.050</td>
<td>.133–.181</td>
</tr>
</tbody>
</table>

*Confidence intervals were estimated based on data reported in Carnagey and Anderson (2005).
CHAPTER 6: Independent Groups Designs

in an experiment. The mean difference between two groups is always relative to the average variability in participants’ scores. One frequently used measure of effect size is Cohen's d. Cohen (1992) developed procedures that are now widely accepted. He suggested that d values of .20, .50, and .80 represent small, medium, and large effects of the independent variable, respectively.

We can illustrate the use of Cohen’s d as a measure of effect size by comparing two conditions in the video-game experiment, the reward condition and the nonviolent condition. The d value is .83 based on the difference between the mean aggressive cognition in the reward condition (.210) and the nonviolent condition (.157). This d value allows us to say that the video-game independent variable, reward vs. nonviolent, had a large effect on the aggressive cognition in these two conditions. Effect-size measures provide researchers with valuable information for describing the findings of an experiment.

Key Concept

Measures of central tendency and variability, as well as effect size, are described in Chapters 11 and 12. In those chapters we outline the computational steps for these measures and discuss their interpretation. Many different effect-size measures are found in the psychology literature. In addition to Cohen’s d, for example, a popular measure of effect magnitude is eta squared, which is a measure of the strength of association between the independent and dependent variables (see Chapter 12). That is, eta squared estimates the proportion of total variance accounted for by the effect of the independent variable on the dependent variable. Measures of effect size are most helpful when comparing the numeric values of a measure from two or more studies or when averaging measures across studies, as is done when a meta-analysis is performed (see below).

Stat Tip

Researchers also use measures of effect size in a procedure called meta-analysis. Meta-analysis is a statistical technique used to summarize the effect sizes from several independent experiments investigating the same independent or dependent variable. In general, the methodological quality of the experiments included in the meta-analysis will determine its ultimate value (see Judd, Smith, & Kidder, 1991). Meta-analyses are used to answer questions like: Are there gender differences in conformity? What are the effects of class size on academic achievement? Is cognitive therapy effective in the treatment of depression? Box 6.2 describes a meta-analysis of studies on psychotherapy for youth with psychological disorders. The results of individual experiments, no matter how well done, often are not sufficient to provide answers to questions about such important general issues. We need to consider a body of literature (i.e., many experiments) pertaining to each issue. (See Hunt, 1997, for a good and readable introduction to meta-analysis.) Meta-analysis allows us to draw stronger conclusions about the principles of psychology because these conclusions emerge only after looking at the results of many individual experiments. These analyses provide an efficient and effective way to summarize the results of large numbers of experiments using effect-size measures.
Weisz, Jensen-Doss, and Hawley (2006) used meta-analysis to summarize the results of 32 psychotherapy studies with youth that compared the effects of “evidence-based treatments” and “usual care.” An evidence-based treatment (EBT) is one that has received empirical support—that is, it has been shown in clinical research to help individuals. Although it seems obvious that EBTs should be widely used in clinical practice because of this empirical support, many therapists argue that these treatments would not be effective in usual clinical contexts. EBTs are structured and require therapists to follow a treatment manual. Some clinicians argue that EBTs are inflexible, rigid treatments that cannot be individualized according to clients’ needs. Furthermore, opponents of EBTs argue that empirical studies that indicate effectiveness typically involve clients with less severe or less complicated problems than those seen in usual clinical practice. These arguments suggest that usual care (UC) in the form of psychotherapy, counseling, or case management as regularly conducted by mental health providers would better meet the needs of the clients typically seen in community settings.

Weisz and his colleagues used meta-analysis to compare directly the outcomes associated with EBTs and usual care. Across 32 studies that compared EBT and UC, the average effect size was 0.30. Thus, youth treated with an evidence-based treatment were better off, on average, than youth treated with usual care. The value of 0.30 falls between Cohen’s (1988) criteria for small and medium effects. This effect size represents the difference between the two types of treatments, not the effect of psychotherapy per se. Weisz et al. note that when EBTs are contrasted with no-treatment control groups (e.g., waiting list), the effect sizes for EBT typically range from 0.50 to 0.80 (medium-to-large effects). In additional analyses the authors grouped studies according to factors such as the severity and complexity of treated problems, treatment settings, and characteristics of the therapists. These analyses were done to determine whether the concerns voiced by critics of evidence-based treatments warrant the continued use of usual care. Weisz and his colleagues found that grouping studies according to these various factors did not influence the overall outcome that EBTs outperformed UC.

This meta-analysis allows psychologists to make the claim with more confidence for a general psychological principle regarding psychotherapy: Evidence-based treatments provide better outcomes for youth than usual care.

Confirming What the Results Reveal

- Researchers use inferential statistics to determine whether an independent variable has a reliable effect on a dependent variable.
- Two methods to make inferences based on sample data are null hypothesis testing and confidence intervals.
- Researchers use null hypothesis testing to determine whether mean differences among groups in an experiment are greater than the differences that are expected simply because of error variation.
- A statistically significant outcome is one that has a small likelihood of occurring if the null hypothesis were true.
- Researchers determine whether an independent variable has had an effect on behavior by examining whether the confidence intervals for different
samples in an experiment overlap. The degree of overlap provides information as to whether the sample means estimate the same population mean or different population means.

Perhaps the most basic claim that researchers want to make when they do an experiment is that the independent variable did have an effect on the dependent variable. Another way to phrase this claim is to say that researchers want to confirm that the independent variable produced a difference in behavior. Descriptive statistics alone are not sufficient evidence to confirm this basic claim.

To confirm whether the independent variable has produced an effect in an experiment, researchers use inferential statistics. They need to use inferential statistics because of the nature of the control provided through random assignment in experiments. As we have previously described, random assignment does not eliminate the individual differences among subjects. Random assignment simply balances, or averages, the individual differences among subjects across the groups of the experiment. The nonsystematic (i.e., random) variation due to differences among subjects within each group is called error variation. The presence of error variation poses a potential problem because the means of the different groups in the experiment may differ simply because of error variation, not because the independent variable has an effect. Thus, by themselves, the mean results of the best-controlled experiment do not permit a definite conclusion about whether the independent variable has produced a difference in behavior. Inferential statistics allow researchers to test whether differences between group means are due to an effect of the independent variable, not just due to chance (error variation). Researchers use two types of inferential statistics to make decisions about whether an independent variable has had an effect: null hypothesis testing and confidence intervals.

We realize it may be frustrating to learn that the results of the best-controlled experiment often do not permit a definite conclusion about whether the independent variable produced a difference in behavior. In other words, what you have learned so far about research methods is not enough! Unfortunately, even with the tools of data analysis we cannot give you a way to make definite conclusions about what produced a difference in behavior. But what we can give you is a way (actually, several ways) to make the best possible statement about what produced a difference. The conclusion will be based on a probability—namely, a probability that will help you to decide whether your effect is or is not simply due to chance. It is easy to get lost in the complexities of null hypothesis testing and confidence intervals, but keep in mind the following two critical points:

First and foremost, differences in behavior can arise simply due to chance (often referred to as error variation). What you want to know is, how likely it is that the difference you have observed is only due to chance (not to the effect of your independent variable)? Actually, what you would really like to know is, how likely it is that your independent variable had an effect? However, we can’t answer these questions using statistical inference. As
Null Hypothesis Significance Testing (NHST) Researchers most frequently use null hypothesis significance testing (NHST) to decide whether an independent variable has produced an effect in an experiment. Null hypothesis significance testing begins with the assumption that the independent variable has had no effect. If we assume that the null hypothesis is true, we can use probability theory to determine the probability that the difference we did observe in our experiment would occur “by chance.” A statistically significant outcome is one that has only a small likelihood of occurring if the null hypothesis were true. A statistically significant outcome means only that the difference we obtained in our experiment is larger than would be expected if error variation alone (i.e., chance) were responsible for the outcome.

The outcome of an experiment is usually expressed in terms of the differences between the means for the conditions in the experiment. How do we know the probability of the obtained outcome in an experiment? Most often, researchers use inferential statistics tests such as the t-test or F-test. The t-test is used when there are two levels of the independent variable, and the F-test is used when there are three or more levels of the independent variable. Each value of a t- or F-test has a probability value associated with it when the null hypothesis is assumed. This probability can be determined once the researcher has computed the value of the test statistic.

Assuming the null hypothesis is true, just how small does the probability of our outcome need to be in order to be statistically significant? Scientists tend to agree that outcomes with probabilities (p) of less than 5 times out of 100 (or p < .05) are judged to be statistically significant. The probability value researchers use to decide that an outcome is statistically significant is called the level of significance. The level of significance is indicated by the Greek letter alpha (α).

We can now illustrate the procedures of null hypothesis testing to analyze the video-game experiment we described earlier (see Table 6.1). The first research question we would ask is whether there was any overall effect of the independent variable of video-game version. That is, did aggressive cognition differ as a function of the three versions of the video game? The null hypothesis for this overall test is that there is no difference among the population means.
represented by the means of the experimental conditions (remember that the null hypothesis assumes no effect of the independent variable). The p value for the F-test that was computed for the effect of the video-game version was less than the .05 level of significance; thus, the overall effect of the video-game variable was statistically significant. To interpret this outcome, we would need to refer to the descriptive statistics for this experiment in Table 6.1. There we see that the mean aggressive cognition for the three video-game conditions was different. For example, aggressive cognition was highest with the reward video game (.210) and lowest with the nonviolent video game (.157). The statistically significant outcome of the F-test allows us to make the claim that the video-game version did produce a difference in aggressive cognition.

Researchers want to make more specific claims about the effects of independent variables on behavior than that the independent variable did have an effect. F-tests of the overall differences among the means tell us that something happened in the experiment, but they don’t tell us much about what did happen. One way to gain this more specific information about the effects of independent variables is to use confidence intervals.

Using Confidence Intervals to Examine Mean Differences The confidence intervals for each of the three groups in the video-game experiment are shown in Table 6.1. A confidence interval is associated with a probability (usually .95) that the interval contains the true population mean. The width of the interval tells us how precise our estimate is (the narrower the better). Confidence intervals can also be used to compare differences between two population means. We can use the .95 confidence intervals presented in Table 6.1 to ask specific questions about the effects of the video-game version on aggressive cognition. We accomplish this by examining whether the confidence intervals for the different video-game groups overlap. When the confidence intervals do not overlap, we can be confident that the population means for the two groups differ. For example, notice that the confidence interval for the reward group is .186 to .234. This indicates there is a .95 probability that the interval .186 to .234 contains the population mean for aggressive cognition in the reward condition (remember the sample mean of .210 only estimates the population mean). The confidence interval for the nonviolent group is .133 to .181. This confidence interval does not overlap at all with the confidence interval for the reward group (i.e., the upper limit of .181 for the nonviolent group is less than the lower limit of .186 for the reward group). With this evidence we can make the claim that aggressive cognition in the reward condition was greater than aggressive cognition in the nonviolent video-game condition.

When we compare the confidence intervals for the reward group (.186–.234) and the punishment group (.151–.199), however, we come to a different conclusion. The confidence intervals for these groups do overlap. Even though the sample means of .210 and .175 differ, we cannot conclude that the population means differ because of the overlap of the confidence intervals. We can offer the following rule of thumb for interpreting this result: If intervals overlap slightly, then we must acknowledge our uncertainty about the true mean difference and postpone judgment; if the intervals overlap such that the mean of one group lies within the
interval of another group, we may conclude that the population means do not differ. In the video-game experiment, the overlap is small and the sample means for each condition do not fall within the intervals for the other group. We want to decide whether the populations differ, but all we can really say is that we don’t have sufficient evidence to decide one way or the other. In this situation we must postpone judgment until the next experiment is done.

The logic and computational procedures for confidence intervals and for the t-test are found in Chapter 11. The F-test (in its various forms) is discussed in Chapter 12.

What Data Analysis Can’t Tell Us

We’ve already alluded to one thing that our data analysis can’t tell us. Even if our experiment is internally valid and the results are statistically significant, we cannot say for sure that our independent variable had an effect (or did not have an effect). We must learn to live with probability statements. The results of our data analysis also can’t tell us whether the results of our study have practical value or even if they are meaningful. It is easy to do experiments that ask trivial research questions (see Sternberg, 1997, and Chapter 1). It is also easy (maybe too easy!) to do a bad experiment. Bad experiments—that is, ones that lack internal validity—can easily produce statistically significant outcomes and nonoverlapping confidence intervals; however, the outcome will be un interpretable.

When an outcome is statistically significant, we conclude that the independent variable produced an effect on behavior. Yet, as we have seen, our analysis does not provide us with certainty regarding our conclusion, even though we reached the conclusion “beyond a reasonable doubt.” Also, when an outcome is not statistically significant, we cannot conclude with certainty that the independent variable did not have an effect. All we can conclude is there is not sufficient evidence in the experiment to claim that the independent variable produces an effect. Determining that an independent variable has not had an effect can be even more crucial in applied research. For example, is a generic drug as effective as its brand-name counterpart? To answer this research question, researchers often seek to find no difference between the two drugs. The standards for experiments attempting to answer questions regarding no difference between conditions are higher than those for experiments seeking to confirm that an independent variable does have an effect. We describe these standards in Chapter 12.

Because researchers rely on probabilities to make decisions about the effects of independent variables, there is always some chance of making an error. There are two types of errors that can occur when researchers use inferential statistics. When we claim that an outcome is statistically significant and the null hypothesis (no difference) is really true, we are making a Type I error. A Type I error is like a false alarm—saying that there is a fire when there is not. When we conclude that we have insufficient evidence to reject the null hypothesis
and it is, in fact, false, we are making a *Type II error* (Type I and Type II errors are described more fully in Chapter 12). We would never make either of these errors if we could know for sure whether the null hypothesis was true or false. While being mindful of the possibility that data analysis can lead to incorrect decisions, we must also remember that data analysis can and often does lead to correct decisions. The most important thing for researchers to remember is that inferential statistics can never replace replication as the ultimate test of the reliability of an experimental outcome.

Establishing the External Validity of Experimental Findings

- The findings of an experiment have external validity when they can be applied to other individuals, settings, and conditions beyond the scope of the specific experiment.
- In some investigations (e.g., theory-testing), researchers may choose to emphasize internal validity over external validity; other researchers may choose to increase external validity using sampling or replication.
- Conducting field experiments is one way that researchers can increase the external validity of their research in real-world settings.
- Partial replication is a useful method for establishing the external validity of research findings.
- Researchers often seek to generalize results about conceptual relationships among variables rather than specific conditions, manipulations, settings, and samples.

As you learned in Chapter 4, *external validity* refers to the extent to which findings from a research study can be generalized to individuals, settings, and conditions beyond the scope of the specific study. A frequent criticism of highly controlled experiments is that they lack external validity; that is, the findings observed in a controlled laboratory experiment may describe what happens only in that specific setting, with the specific conditions that were tested, and with the specific individuals who participated. Consider again the video-game experiment in which college students played a race-car video game in a laboratory setting. The laboratory setting is ideally suited for exercising control procedures that ensure the internal validity of an experiment. But do these findings help us understand violence and aggression in a natural setting? When a different type of exposure to violence is involved? When the people exposed to violence are senior citizens? These are questions of external validity, and they raise a more general question. If the findings of laboratory experiments are so specific, what good are they to society?

One answer to this question is a bit unsettling, at least initially. Mook (1983) argued that, when the purpose of an experiment is to test a specific hypothesis derived from a psychological theory, the question of external validity of the findings is irrelevant. An experiment is often done to determine whether subjects *can* be induced to behave in a certain way. The question whether subjects *do* behave that way in their natural environment is secondary to the question raised in the experiment. The issue of the external validity of experiments is not
a new one, as reflected in the following statement by Riley (1962): “In general, laboratory experiments are not set up to imitate the most typical case found in nature. Instead, they are intended to answer some specific question of interest to the experimenter” (p. 413).

Of course, researchers often do want to obtain findings that they can generalize beyond the boundaries of the experiment itself. To achieve this goal, researchers can include the characteristics of the situations to which they wish to generalize in their experiments. For example, Ceci (1993) described a research program that he and his colleagues conducted on children’s eyewitness testimony. He described how their research program was motivated in part because previous studies on this topic did not capture all the dimensions of an actual eyewitness situation. Ceci described how their research program included factors such as multiple suggestive interviews, very long retention intervals, and recollections of stressful experiences. Including these factors made the experiments more representative of situations that are actually involved when children testify (see Figure 6.4).

Ceci (1993) also pointed out, however, that important differences remained between the experiments and real-life situations:

High levels of stress, assaults to a victim’s body, and the loss of control are characteristics of events that motivate forensic investigations. Although these factors are at play in some of our other studies, we will never mimic experimentally the assaultive nature of acts perpetrated on child victims, because even those studies that come closest, such as the medical studies, are socially and parentally sanctioned, unlike sexual assaults against children. (pp. 41–42)

As Ceci’s comments reveal, in some situations, such as those involving eyewitness testimony about despicable acts, there may be important ethical constraints on establishing the external validity of experiments.

The external validity of research findings is frequently questioned because of the nature of the “subjects.” As you are aware, many studies in psychology involve college students who participate in experiments as part of their introductory psychology course. Dawes (1991), among others, argues that college students are a select group who may not always provide a good basis for building general conclusions about human behavior and mental processes. Similarly, Sue (1999) argues that researchers’ greater emphasis on internal validity over external validity lessens the attention paid to the representativeness of the people who are studied. Questions about the external validity of research findings based on the populations being studied are especially important in applied research. In medical research, for example, effective treatments for men may not be effective for women, and effective treatments for adults may not be effective for children.

Field experiments, which we mentioned briefly in Chapter 4, are one way to increase the external validity of a research study. They can also yield practical knowledge. For example, to investigate people’s perceptions of risks, participants in two field experiments were asked to answer questions about risks during the 2009 H1N1 flu pandemic (Lee, Schwarz, Taubman, & Hou, 2010).
The first experiment was conducted on a university campus and the second was conducted in shopping malls and near downtown businesses. Individuals who agreed to participate were randomly assigned to an experimental condition, in which the confederate sneezed and coughed prior to the administration of a brief questionnaire, or to a control condition (no sneezes, coughs). Results indicated that this simple manipulation influenced participants’ perceptions of risk. Participants in the sneeze condition, compared to the no-sneeze condition, rated more highly their risk of contracting a serious disease, their risk of a heart attack before age 50, and their risk of dying from a crime or accident. Interestingly, compared to participants in the control condition, individuals in the sneeze condition also were more likely to favor federal spending for flu vaccines rather than the creation of “green” jobs. Because this experiment was carried out in a natural setting, it is more likely to be representative of “real-world” conditions. Thus, we can be more confident that the results will generalize to other real-world settings than if an artificial situation had been created in the laboratory.
The external validity of experimental findings also can be established through partial replication. Partial replications are commonly done as a routine part of the process of investigating the conditions under which a phenomenon reliably occurs. A partial replication can help to establish external validity by showing that a similar experimental result occurs when slightly different experimental procedures are used. Consider the same basic experiment done in both a large metropolitan university hospital and in a small rural community clinic; the participants and the settings in the experiments are very different. If the same results are obtained even with these different participants and settings, we can say the findings can be generalized across these two populations and settings. Notice that neither experiment alone has external validity; it is the findings that occur in both experiments that have external validity.

Researchers can also establish the external validity of their findings by doing conceptual replications. What we wish to generalize from any one study are conceptual relationships among variables, not the specific conditions, manipulations, settings, or samples (see Banaji & Crowder, 1989; Mook, 1983). Anderson and Bushman (1997) provide an example illustrating the logic of a conceptual replication. Consider a study with 5-year-old children to determine if a specific insult (“pooh-pooh-head”) induces anger and aggression. We could do a replication to see if the same insult produces the same result with 35-year-old adults. As Anderson and Bushman state, the findings for 5-year-olds probably wouldn’t be replicated with 35-year-olds because “‘pooh-pooh-head’ just doesn’t pack the same ‘punch’ for 5- and 35-year-old people” (p. 21). However, if we wish to establish the external validity of the idea that “insults increase aggressive behavior,” we can use different words that are meaningful insults for each population.

When Anderson and Bushman (1997) examined variables related to aggression at the conceptual level, they found that findings from experiments conducted in laboratory settings and findings from correlational studies in real-world settings were very similar. They concluded that “artificial” laboratory experiments do provide meaningful information about aggression because they demonstrate the same conceptual relationships that are observed in real-world aggression. Furthermore, laboratory experiments allow researchers to isolate the potential causes of aggression and to investigate boundary conditions for when aggression will or will not occur.

What about when results in the lab and the real world disagree? Anderson and Bushman (1997) argue that these discrepancies, rather than evidence for the weakness of either method, should be used to help us refine our theories about aggression. That is, the discrepancies should make us recognize that different psychological processes may be at work in each setting. When we increase our understanding of these discrepancies, we will increase our understanding of aggression.

Establishing the external validity of each finding in psychology by performing partial replications or conceptual replications would be virtually impossible. How, for instance, could we show that an experimental finding obtained with a group of college students will generalize to groups of older adults, working professionals, less educated individuals, and so forth? One possible approach
is worth considering: We should assume that behavior is relatively continuous (similar) across time, subjects, and settings unless we have reason to assume otherwise (Underwood & Shaughnessy, 1975). Ultimately, the external validity of research findings is likely to be established more by the good judgment of the scientific community than by definitive empirical evidence.

Matched Groups Design

- A matched groups design may be used to create comparable groups when there are too few subjects available for random assignment to work effectively.
- Matching subjects on the dependent variable (as a pretest) is the best approach for creating matched groups, but scores on any matching variable must correlate with the dependent variable.
- After subjects are matched on the matching variable, they should then be randomly assigned to the conditions of the independent variable.

To work effectively, the random groups design requires samples of sufficient size to ensure that individual differences among subjects will be balanced through random assignment. That is, the assumption of the random groups design is that individual differences “average out” across groups. But how many subjects are required for this averaging process to work as it should? The answer is “It depends.” More subjects will be needed to average out individual differences when samples are drawn from a heterogeneous population than from a homogeneous one.

We can be relatively confident that random assignment will not be effective in balancing the differences among subjects when small numbers of subjects are tested from heterogeneous populations. However, this is exactly the situation researchers face in several areas of psychology. For example, some developmental psychologists study newborn infants; others study the elderly. Both newborns and the elderly certainly represent diverse populations, and developmental psychologists often have available only limited numbers of participants.

One alternative that researchers have in this situation is to administer all the conditions of the experiment to all the subjects, using a repeated measures design (to be discussed in Chapter 7). Nevertheless, some independent variables require separate groups of subjects for each level. For instance, suppose researchers wish to compare two types of postnatal care for premature infants and it is not possible to give both types of care to each infant. In this situation, and many others, researchers will need to test separate groups in the experiment.

The **matched groups design** is a good alternative when neither the random groups design nor the repeated measures design can be used effectively. The logic of the matched groups design is simple and compelling. Instead of trusting random assignment to form comparable groups, the researcher makes the groups equivalent by matching subjects. Once comparable groups have been formed based on the matching, the logic of the matched groups design is the same as that for the random groups design (see Figure 6.5). In most uses of the
PART III: Experimental Methods

FIGURE 6.5 Random assignment is not likely to be effective in balancing differences among subjects when small numbers of subjects from heterogeneous populations are tested (e.g., newborns). In this situation, researchers may want to consider the matched groups design.

matched groups design, a pretest matching variable is used to match subjects. The challenge is to select a pretest variable that equates the groups on a dimension that is relevant to the outcome of the experiment. The matched groups design is useful only when a good matching variable is available.

The most preferred matching variable is one that will be used in the experiment itself. For example, if the dependent variable in the experiment is blood pressure, participants should be matched on blood pressure prior to the start of the experiment. The matching is accomplished by measuring the blood pressure of all participants and then forming pairs or triples or quadruples of participants (depending on the number of conditions in the experiment) who have identical or very similar blood pressures. Thus, at the start of the experiment, participants in the different groups will have, on average, equivalent blood pressure. Researchers can then reasonably attribute any group differences in blood pressure at the end of the study to the treatment (presuming other potential variables have been held constant or balanced).

In some experiments, the primary dependent variable cannot be used to match subjects. For example, consider an experiment that teaches participants different approaches to solving a puzzle. If a pretest were given to see how long it took individuals to solve this puzzle, the participants would likely learn the solution to the puzzle during the pretest. If so, then it would be impossible to observe differences in the speed with which different groups of participants solved the puzzle following the experimental manipulation. In this situation the next best alternative for a matching variable is to use a measure from the
same class or category as the experimental task. In our problem-solving experiment, participants could be matched on their performance when solving a different puzzle from the experimental puzzle. A less preferred, but still possible, alternative for matching is to use a measure that is from a different class than the experimental dependent variable. For our problem-solving experiment, participants could be matched on some test of general ability, such as a test of spatial ability. When using these alternatives, however, researchers must confirm that performance on the matching variable correlates with the performance on the task that is used as the dependent variable. In general, as the correlation between the matching variable and the dependent variable decreases, the advantage of the matched groups design, relative to the random groups design, also decreases.

Even when a good matching variable is available, matching is not sufficient to form comparable groups in an experiment. For example, consider a matched groups design to compare two different methods of caring for premature infants so as to increase their body weight. Six pairs of premature infants could be matched on their initial body weight. There remain, however, potentially relevant characteristics of the participants beyond those measured by the matching variable. For example, the two groups of premature infants may not be comparable in their general health or in their degree of parental attachment. It is important, therefore, to use random assignment in the matched groups design to try to balance other potential factors beyond the matching variable. Specifically, after matching the infants on body weight, individuals in each pair would be randomly assigned to one of the two treatment groups. In conclusion, the matched groups design is a better alternative than the random groups design when a good matching variable is available and when only a small number of subjects is available for an experiment that requires separate groups for each condition.

Natural Groups Design

- Individual differences variables (or subject variables) are selected rather than manipulated to form natural groups designs.
- The natural groups design represents a type of correlational research in which researchers look for covariations between natural groups variables and dependent variables.
- Causal inferences cannot be made regarding the effects of natural groups variables because plausible alternative explanations for group differences exist.

Researchers in many areas of psychology are interested in independent variables that are called individual differences variables, or subject variables. An individual differences variable is a characteristic or trait that varies across individuals. Religious affiliation is an example of an individual differences variable. Researchers can’t manipulate this variable by randomly assigning people to Catholic, Jewish, Muslim, Protestant, or other groups. Instead, researchers “control” the religious affiliation variable by systematically selecting
individuals who naturally belong to these groups. Individual differences variables such as gender, introversion–extraversion, race, or age are important independent variables in many areas of psychology.

It is important to differentiate experiments involving independent variables whose levels are selected from those involving independent variables whose levels are manipulated. Experiments involving independent variables whose levels are selected—like individual differences variables—are called natural groups designs. The natural groups design is frequently used in situations in which ethical and practical constraints prevent us from directly manipulating independent variables. For example, no matter how interested we might be in the effects of major surgery on subsequent depression, we could not ethically perform major surgery on a randomly assigned group of introductory psychology students and then compare their depression symptoms with those of another group who did not receive surgery! Similarly, if we were interested in the relationship between divorce and emotional disorders, we could not randomly assign some people to get divorced. By using the natural groups design, however, we can compare people who have had surgery with those who have not. Similarly, people who have chosen to divorce can be compared with those who have chosen to stay married.

Researchers use natural groups designs to meet the first two objectives of the scientific method: description and prediction. For example, studies have shown that people who are separated or divorced are much more likely to receive psychiatric care than are those who are married, widowed, or have remained single. On the basis of studies like these, we can describe divorced and married individuals in terms of emotional disorders, and we can predict which group is more likely to experience emotional disorders.

Serious problems can arise, though, when the results of natural groups designs are used to make causal statements. For instance, the finding that divorced persons are more likely than married persons to receive psychiatric care shows that these two factors covary. This finding could be taken to mean that divorce causes emotional disorders. But, before we conclude that divorce causes emotional disorders, we must assure ourselves that the time-order condition for a causal inference has been met. Does divorce precede the emotional disorder, or does the emotional disorder precede the divorce? A natural groups design does not tell us.

The natural groups design also poses problems when we try to satisfy the third condition for demonstrating causality, eliminating plausible alternative causes. The individual differences studied in the natural groups design are usually confounded—groups of individuals are likely to differ in many ways in addition to the variable used to classify them. For example, individuals who divorce and individuals who stay married may differ with respect to a number of characteristics other than their marital status, for example, their religious practices or financial circumstances. Any differences observed between divorced and married individuals may be due to these other characteristics, not to divorce. The manipulation done by “nature” is rarely the controlled type we have come to expect in establishing the internal validity of an experiment.
There are approaches for drawing causal inferences in the natural groups design. One effective approach requires that individual differences be studied in combination with independent variables that can be manipulated. This combination of more than one independent variable in one experiment requires the use of a complex design, which we will describe in Chapter 8. For now, recognize that drawing causal inferences based on the natural groups design can be a treacherous enterprise. Although such designs are sometimes referred to as “experiments,” there are important differences between an experiment involving an individual differences variable and an experiment involving a manipulated variable.

Summary

Researchers conduct experiments to test hypotheses derived from theories, but experiments can also be used to test the effectiveness of treatments or programs in applied settings. The experimental method is ideally suited to identifying cause-and-effect relationships when the control techniques of manipulation, holding conditions constant, and balancing are properly implemented.

In this chapter we focused on applying these control techniques in experiments in which different groups of subjects are given different treatments representing the levels of the independent variable (see Figure 6.6). In the random groups design, the groups are formed using randomization procedures such that the groups are comparable at the start of the experiment. If the groups perform differently following the manipulation, and all other conditions were held constant, it is presumed that the independent variable is responsible for the difference. Random assignment is the most common method of forming comparable groups. Random assignment is an attempt to ensure that the differences among subjects are balanced, or averaged, across conditions in the experiment. The most common technique for carrying out random assignment is block randomization.

There are several threats to the internal validity of experiments that involve testing independent groups. Testing intact groups even when the groups are
randomly assigned to conditions should be avoided because the use of intact groups is highly likely to result in a confounding. Extraneous variables, such as different rooms or different experimenters, must not be allowed to confound the independent variable of interest.

A more serious threat to the internal validity of the random groups design is involved when subjects fail to complete the experiment successfully. Selective subject loss occurs when subjects are lost differentially across the conditions and some characteristic of the subject that is related to the outcome of the experiment is responsible for the loss. We can help prevent selective loss by restricting subjects to those likely to complete the experiment successfully, or we can compensate for it by selectively dropping comparable subjects from the group that did not experience the loss. Mechanical subject loss, in which an error in procedures causes the loss of a subject, is less problematic. Demand characteristics and experimenter effects can be minimized through the use of proper experimental procedures, but they can best be controlled by using placebo control and double-blind procedures.

Data analysis and statistics provide an alternative to replication for determining whether the results of a single experiment can be used as evidence to claim that an independent variable has had an effect on behavior. Data analysis involves the use of both descriptive statistics and inferential statistics. Describing the results of an experiment typically involves the use of means, standard deviations, and measures of effect size. Meta-analysis makes use of measures of effect size to provide a quantitative summary of the results of a large number of experiments on an important research question.

Inferential statistics are important in data analysis because researchers need a way to decide whether the obtained differences in an experiment are due to chance or are due to the effect of the independent variable. Confidence intervals and null hypothesis testing are two effective statistical techniques researchers can use to analyze experiments. Statistical analysis cannot guarantee, however, that experimental findings will be meaningful or be of practical significance. Replication remains the ultimate test of the reliability of a research finding.

Researchers also strive to establish the external validity of their experimental findings. When testing psychological theories, researchers tend to emphasize internal validity over external validity. One effective approach for establishing the external validity of findings is for researchers to select representative samples for all dimensions to which they seek to generalize. By conducting field experiments, researchers can increase the external validity of their research findings to real-world settings. Partial replications and conceptual replications are two common ways that researchers use to establish external validity.

The matched groups design is an alternative to the random groups design when only a small number of subjects is available, when a good matching variable is available, and when the experiment requires separate groups for each treatment. The biggest problem with the matched groups design is that the groups are equated only on the characteristic measured by the matching variable. In the natural groups design, researchers select the levels of independent variables (usually individual differences, or subject, variables) and look
for systematic relationships between these independent variables and other aspects of behavior. Essentially, the natural groups design involves looking for correlations between subjects’ characteristics and their performance. Such correlational research designs pose problems in drawing causal inferences.

KEY CONCEPTS

- **internal validity** 181
- **independent groups design** 182
- **random assignment** 182
- **random groups design** 182
- **block randomization** 188
- **threats to internal validity** 189
- **mechanical subject loss** 191
- **selective subject loss** 191
- **experimenter effects** 194
- **placebo control group** 194
- **double-blind procedure** 195
- **replication** 196
- **effect size** 198
- **Cohen’s d** 199
- **meta-analysis** 199
- **null hypothesis significance testing (NHST)** 202
- **statistically significant** 202
- **confidence interval** 203
- **matched groups design** 209
- **individual differences variable** 211
- **natural groups design** 212

REVIEW QUESTIONS

1. Describe two reasons why psychologists conduct experiments.
2. Describe how the control techniques of manipulation, holding conditions constant, and balancing contribute to meeting the three conditions necessary for a causal inference.
3. Explain why comparable groups are such an essential feature of the random groups design, and describe how researchers achieve comparable groups.
4. Identify what a “block” refers to in block randomization and explain what this procedure accomplishes.
5. What preventive steps could you take if you anticipated that selective subject loss could pose a problem in your experiment?
6. Explain how placebo control and double-blind techniques can be used to control demand characteristics and experimenter effects.
7. Explain why meta-analysis allows researchers to draw stronger conclusions about the principles of psychology.
8. Explain what a statistically significant outcome of an inferential statistics test tells you about the effect of the independent variable in an experiment.
9. Explain what you could conclude if the confidence intervals did not overlap when you were testing for a difference between means for two conditions in an experiment.
10. Briefly describe four ways researchers can establish the external validity of a research finding.
11. Briefly explain the logic of the matched groups design, and identify the three conditions under which the matched groups design is a better alternative than the random groups design.
12. How do individual differences variables differ from manipulated independent variables, and why does this difference make it difficult to draw causal inferences on the basis of the natural groups design?
1. An experimenter is planning to do a random groups design experiment to study the effect of the rate of presenting stimuli on people's ability to recognize the stimuli. The independent variable is the presentation rate, and it will be manipulated at four levels: Very Fast, Fast, Slow, and Very Slow. The experimenter is seeking your help and advice with the following aspects of the experiment:

A. The experimenter asks you to prepare a block-randomized schedule such that there will be four participants in each of the four conditions. To do this, you can use the following random numbers that were taken from the random number table in the Appendix (Table A.1).

1-5-6-6-4-1-0-4-9-3-2-0-4-9-2-3-8-3-9-1
9-1-1-3-2-2-1-9-9-9-5-9-5-1-6-8-1-6-5-2
2-7-1-9-5-4-8-2-2-3-4-6-7-5-1-2-2-9-2-3

B. The experimenter is considering restricting participants to those who pass a stringent reaction time test so as to be sure that they will be able to perform the task successfully with the Very Fast presentation rate. Explain what factors the experimenter should consider in making this decision, being sure to describe clearly what risks, if any, are taken if only this restricted set of participants is tested.

C. The experimenter discovers that it will be necessary to test participants in two different rooms. How should the experimenter arrange the testing of the conditions in these two rooms so as to avoid possible confounding by this extraneous variable?

2. A researcher sought to determine whether women's feelings about their body are affected by subliminal presentations of very thin body images. Presentation of an image for 15 milliseconds (msec) is too fast for people to be aware of the image, making it “subliminal” or outside of conscious awareness.

Women (N = 60) were asked to participate in an experiment described as "speed of judging words on a computer screen." Neutral words (not related to body image) were presented at the center of the screen for 3 sec and participants pressed the left shift key if the word appeared in uppercase letters, and the right shift key if the word appeared in lowercase. All participants viewed the same words, half in uppercase and half in lowercase letters (randomized). However, for a random half of the trials an image was presented for 15 msec before the word appeared. Participants were randomly assigned to see thin images of women (T), overweight women (O), or neutral objects (N), such as a book or houseplant. Women in each group viewed only one type of image. In each condition of 20 participants, women viewed 50 images.

After finishing the computer task, participants completed several questionnaires, including a measure of body dissatisfaction. The women were asked to select from an array of seven line drawings of female figures (from very thin to very obese) the drawing that illustrated how they would like to appear (ideal) and the drawing that best represented how they perceived themselves (actual). The number of figures between the ideal and actual is an operational definition of body dissatisfaction (with 0 indicating no dissatisfaction, negative scores indicating a desire to be thinner, and positive scores indicating a desire to be heavier).

The mean body dissatisfaction score for the Thin Image group was −1.25 (SD = 1.07), the mean score for the Overweight Image group was −0.75 (SD = 1.16), and the mean score for the Neutral Image group was −0.20 (SD = .83).

A. Identify the design of this study, including the independent and dependent variables. Explain why the researcher asked participants to judge the same neutral words in each condition, and provide examples of factors the researcher controlled by using random assignment to conditions.

B. How would you describe the effect of the independent variable using the means for each condition? What do the standard deviations tell you about the body dissatisfaction ratings in the experiment?

C. The p value for the F-test for the effect of the type of image is p = .009. What claim would you make about the effect of the independent variable based on this probability?

D. The .95 confidence interval (CI) for the thin condition is −1.71 to −0.79; the CI for the overweight condition is −1.21 to −0.29; and the CI for the neutral condition is −0.66 to 0.26. What claim would you make based on the estimates of the population means for the three groups in the experiment based on a comparison of these confidence intervals?

E. The effect size for the difference between the means for the thin and neutral groups is d = .85. What information does this effect
size tell you about subliminal exposure to thin images compared to neutral images, beyond what you know from the test of statistical significance and from comparing confidence intervals?

3 Premature infants often have difficulty regulating their body temperature because of their low birth weight and low body fat. Researchers hypothesized that immersion bathing in warm water would improve temperature regulation relative to the common practice of sponge bathing. Eight infants were available to test the hypothesis; four were randomly assigned to each of the two conditions (immersion, sponge) during their stay in the neonatal intensive care unit (NICU). The dependent variable was body temperature 15 minutes after the bath. Contrary to the hypothesis, no difference in body temperature after the bath was found between the two groups.

A A nurse noted that the two groups of infants were very different. The infants randomly assigned to the immersion condition weighed less and were born earlier, on average, than infants in the sponge condition. Explain how this difference between the two groups could have occurred despite the fact that random assignment to conditions was used, and how this difference might have impacted the results of the experiment.

B The researchers decided to test the hypothesis again. This time, however, they considered the weight of the infants. Twelve infants were available for the study with the following weights (in pounds): 4.6, 5.0, 4.1, 4.0, 5.4, 5.8, 4.4, 4.9, 6.2, 5.2, 4.2, 4.6. Identify the research design you would recommend to conduct this study and explain how the infants should be assigned to the conditions of the experiment.

C Suppose a social worker tested the bathing variable when she taught parenting skills during home visits. She reasoned that maintaining body temperature at home is more important than in the NICU, where incubators are used. She randomly assigned 20 parents of premature infants to learn to immerse their babies at the proper temperature, and 20 parents to be instructed about sponge bathing.

The social worker also taught parents how to take the baby’s temperature 15 minutes after the bath (the dependent variable). Identify a goal of the social worker’s research that led her to focus on the setting for conducting her research. How would you describe the findings if both experiments showed that body temperature was higher for infants in the immersion condition relative to the sponge-bath condition?

4 A study was done to compare two diets to help diabetic male patients lose weight. Each diet reduced patients’ intake to 1,800 calories per day. In the control condition, patients chose their own meals from a list of allowed foods, but their calorie intake was not allowed to exceed the limit. In the treatment condition, designed to minimize fluctuations in insulin levels, patients’ meals came from the same list of foods but were planned so as to achieve specific percentages of complex carbohydrates and proteins. Forty men were randomly assigned to each condition. All participants monitored their insulin levels. The experiment lasted 6 months; during that time 15 men in the control condition dropped out of the study (e.g., due to difficulties managing insulin, complications associated with diabetes). Three men in the treatment condition dropped out of the study; two moved out of state, and the work schedule for a third prevented him from attending appointments for the study. At the end of 6 months, the average weight loss for the 25 men who completed the control condition was 11 pounds, and 10 pounds for the 37 men in the treatment condition. The researcher concluded that the treatment, specifying the percentages of calories from different sources (e.g., complex carbohydrates, proteins), is not helpful for achieving weight loss among diabetic men.

A Identify a possible threat to the internal validity of this experiment and explain how this problem could account for the results of the study.

B Assume that for the 80 men in the study, a pretest measure was available that measured the degree to which they were able to regulate and correct, if necessary, their insulin levels. Describe how you could use these pretest scores to determine whether a threat to internal validity occurred.
Answer to Stretching Exercise I

1 Bushman (2005) manipulated the independent variable of type of television program in his study. There were four levels of the independent variable: violent, sexually explicit, violent and sex, and neutral.

2 Bushman (2005) held several factors constant: the same advertisements were used in each condition, participants were tested in small groups in the same setting, and ads were placed at approximately the same point in each program.

3 Bushman (2005) balanced the characteristics of the participants across the four levels by randomly assigning participants to conditions. Thus, participants in each level were equivalent, on average, in their memory ability and their exposure to television programs and products. Bushman also used two random orders of the ads to balance any potential effects due to placement of the ads during the TV programs.

Answer to Stretching Exercise II

1 When one of your authors completed this exercise, she obtained a mean value of 5.65 for the experimental group and a mean of 5.35 for the control group. The two groups were approximately equivalent in terms of average memory ability (a t-test could be computed to determine if the mean scores differ statistically).

2 The experimental group had three “participants” with scores of 2 (and no aces). When these were dropped, the new mean for memory ability was 6.4. Compared to the control group mean of 5.35, the experimental group had, on average, greater memory ability following selective subject loss.

3 To compensate for the three subjects lost, similar “participants” were dropped from the control group (scores of 2, 1, and 1). The new mean for the control group was 6.06. This improved the initial comparability of the two groups.

4 The means for the four groups when one of the authors did this were: (1) 5.6 (2) 4.8 (3) 5.3, and (4) 6.3, indicating greater variability in the average memory ability score across the groups. The fewer the participants randomly assigned to conditions, the more difficult it is for random assignment to create, on average, equivalent groups. Now, put away the cards and get back to studying Chapter 6!

Answer to Challenge Question 1

A The first step is to assign a number from 1 to 4 to the respective conditions: 1 = Very Fast; 2 = Fast; 3 = Slow; and 4 = Very Slow. Then, using the random numbers, select four sequences of the numbers from 1 to 4. In doing this you skip any numbers greater than 4 and any number that is a repetition of a number already selected in the sequence. For example, if the first number you select is a 1, you skip all repetitions of 1 until you have selected all the numbers for the sequence of 1 to 4. Following this procedure and working across the rows of random numbers from left to right, we obtained the following four sequences for the four blocks of the randomized block schedule. The order of the conditions for each block is also presented. The block-randomized schedule specifies the order of testing the conditions for the first 16 participants in the experiment.

Block 1: 1-4-3-2 Very Fast, Very Slow, Slow, Fast
Block 2: 4-2-3-1 Very Slow, Fast, Slow, Very Fast
Block 3: 1-3-2-4 Very Fast, Slow, Fast, Very Slow
Block 4: 2-3-4-1 Fast, Slow, Very Slow, Very Fast

B The investigator is taking a reasonable step to avoid selective subject loss, but restricting participants to those who pass a stringent reaction time test entails the risk of decreased external validity of the obtained findings.

C The rooms can be balanced by assigning entire blocks from the block-randomized schedule to be tested in each room. Usually, the number of blocks assigned to each room is equal, but this is not essential. For effective balancing, however, several blocks should be tested in each room.
CHAPTER SEVEN

Repeated Measures Designs

CHAPTER OUTLINE

OVERVIEW
WHY RESEARCHERS USE REPEATED MEASURES DESIGNS
THE ROLE OF PRACTICE EFFECTS IN REPEATED MEASURES DESIGNS
Defining Practice Effects
Balancing Practice Effects in the Complete Design
Balancing Practice Effects in the Incomplete Design
DATA ANALYSIS OF REPEATED MEASURES DESIGNS
Describing the Results
Confirming What the Results Reveal
THE PROBLEM OF DIFFERENTIAL TRANSFER
SUMMARY
PART III: Experimental Methods

Overview

Thus far we have considered experiments in which subjects participate in only one condition of the experiment. They are randomly assigned to one condition in the random groups and matched groups designs, or they are selected to be in one group in natural groups designs. These independent groups designs are powerful tools for studying the effects of a wide range of independent variables. There are times, however, when it is more effective to have each subject participate in all the conditions of an experiment. These designs are called repeated measures designs (or within-subjects designs). In an independent groups design, a separate group serves as a control for the group given the experimental treatment. In a repeated measures design, subjects serve as their own controls because they participate in both the experimental and control conditions.

We begin this chapter by exploring the reasons why researchers choose to use a repeated measures design. We then describe one of the central features of repeated measures designs. Specifically, in repeated measures designs, participants can undergo changes during the experiment as they are repeatedly tested. Participants may improve with practice, for example, because they learn more about the task or because they become more relaxed in the experimental situation. They also may get worse with practice—for example, because of fatigue or reduced motivation. These temporary changes are called practice effects.

We described in Chapter 6 that individual differences among participants cannot be eliminated in the random groups design, but they can be balanced by using random assignment. Similarly, the practice effects that participants experience due to repeated testing in the repeated measures designs cannot be eliminated. Like individual differences in the random groups design, however, practice effects can be balanced, or averaged, across the conditions of a repeated measures design experiment. When balanced across the conditions, practice effects are not confounded with the independent variable and the results of the experiment are interpretable.

Our primary focus in this chapter is to describe the techniques that researchers can use to balance practice effects. We also introduce data analysis procedures for repeated measures designs. We conclude the chapter with a consideration of problems that can arise in repeated measures designs.

Why Researchers Use Repeated Measures Designs

- Researchers choose to use a repeated measures design in order to
 (1) conduct an experiment when few participants are available, (2) conduct the experiment more efficiently, (3) increase the sensitivity of the experiment, and (4) study changes in participants’ behavior over time.

Researchers gain several advantages when they choose to use a repeated measures design. First, repeated measures designs require fewer participants than an independent groups design, so these designs are ideal for situations in which only a small number of participants is available. Researchers who do experiments with children, the elderly, or special populations such as individuals with brain injuries frequently have a small number of participants available.
Researchers choose to use repeated measures designs even when sufficient numbers of participants are available for an independent groups design. The repeated measures designs often are more convenient and efficient. Consider, for example, the interesting research on face recognition. Numerous studies have investigated biases affecting our memory for faces. Research reveals that females are better at remembering female faces than male faces; own-age faces are remembered better than faces of another age group; and same-race faces better than cross-race faces. In many of these studies, photographs of different faces are presented to participants very briefly, perhaps only for half a second, and participants are asked if they recognize the face as one they’ve seen before. It would be terribly inefficient to have separate groups of participants view one photograph for less than a second. Even if 20 faces from one condition of the experiment were presented, it would take more time to instruct the participants regarding the nature of the task than it would to present the task itself!

Another important advantage of repeated measures designs is that they are generally more sensitive than an independent groups design. The sensitivity of an experiment refers to the ability to detect the effect of the independent variable even if the effect is a small one. Ideally, participants in a study respond similarly to an experimental manipulation. In practice, however, we know that people don’t all respond the same way. This error variation can be due to variations in the procedure each time the experiment is conducted or to individual differences among the participants. An experiment is more sensitive when there is less variability in participants’ responses within a condition of an experiment, that is, less error variation. In general, participants in a repeated measures design will vary within themselves less over the time of an experiment than participants in a random groups design will vary from other participants. Another way to say this is that there is usually more variation between people than there is within people. Thus, error variation will generally be less in a repeated measures design. The less error variation, the easier it is to detect the effect of an independent variable. The increased sensitivity of repeated measures designs is especially attractive to researchers who study independent variables that have small (hard-to-see) effects on behavior.

Researchers also choose to use a repeated measures design because some areas of psychological research require its use. When the research question involves studying changes in participants’ behavior over time, such as in a learning experiment, a repeated measures design is needed. Further, whenever the experimental procedure requires that participants compare two or more stimuli relative to one another, a repeated measures design must be used. For instance, researchers asked heterosexual couples in a romantic relationship to make “snap judgments” of people in photographs, rating them, for example, as trustworthy, intelligent, and aggressive (Güneydin, Zayas, Selcuk, & Hazan, 2012). Unknown to the participants, half of the faces were digitally morphed so that the photographs looked similar to their romantic partner. Women rated novel photos that resembled their partner more positively than novel photos not resembling their partner. Men’s judgments were not affected by resemblance to their partner! These results occurred even when participants were not consciously aware of the similarity of the photos to their significant other.
Experimental Methods

Part III: Experimental Methods

Research studies of human auditory and visual perception, and the relationship between sensory process and physical stimuli (psychophysics) rely heavily on repeated measures designs. Journals such as *Perception & Psychophysics* and *Journal of Experimental Psychology: Human Perception and Performance* frequently publish results of experiments using repeated measures designs (see also Box 7.1).

The Role of Practice Effects in Repeated Measures Designs

- Repeated measures designs cannot be confounded by individual differences variables because the same individuals participate in each condition (level) of the independent variable.
- Participants’ performance in repeated measures designs may change across conditions simply because of repeated testing (not because of the independent variable); these changes are called practice effects.
- Practice effects may threaten the internal validity of a repeated measures experiment when the different conditions of the independent variable are presented in the same order to all participants.
- The two types of repeated measures designs, complete and incomplete, differ in the specific ways they control for practice effects.

Defining Practice Effects

The repeated measures designs have another important advantage in addition to the ones we have already described. In a repeated measures design, the characteristics of the participants cannot confound the independent variable being manipulated in the experiment. The same participants are tested in all the conditions of a repeated measures design, so it is impossible to end up with brighter,
healthier, or more motivated participants in one condition than in another condition. Stated more formally, there can be no confounding by individual differences variables in repeated measures designs. This does not mean, however, that there are no threats to the internal validity of experiments that are done using repeated measures designs.

One potential threat to internal validity arises because participants may change over time. The repeated testing of participants in the repeated measures design gives them practice with the experimental task. As a result of this practice, participants may get better and better at doing the task because they learn more about the task, or they may get worse at the task because of such factors as fatigue and boredom (see Figure 7.1). The changes participants undergo with repeated testing in the repeated measures designs are called practice effects. In general, practice effects should be balanced across the conditions in repeated measures designs so that practice effects “average out” across conditions. The key to conducting interpretable experiments using the repeated measures designs is learning to use appropriate techniques to balance practice effects.

FIGURE 7.1 There are both positive and negative effects of practicing a new skill. Repeating the same experience can lead to improvement, but it also can lead to fatigue, a decrease in motivation, and even boredom.
The two types of repeated measures designs are the complete and the incomplete design. The specific techniques for balancing practice effects differ for the two repeated measures designs, but the general term used to refer to these balancing techniques is **counterbalancing**. In the **complete design**, practice effects are balanced for *each* participant by administering the conditions to each participant several times, using different orders each time. Each participant can thus be considered a “complete” experiment. In the **incomplete design**, each condition is administered to each participant only once. The order of administering the conditions is varied across participants rather than for each participant, as is the case in the complete design.

Balancing Practice Effects in the Complete Design

- Practice effects are balanced in complete designs within each participant using block randomization or ABBA counterbalancing.
- In block randomization, all of the conditions of the experiment (a block) are randomly ordered each time they are presented.
- In ABBA counterbalancing, a random sequence of all conditions is presented, followed by the opposite of the sequence.
- Block randomization is preferred over ABBA counterbalancing when practice effects are not linear, or when participants’ performance can be affected by anticipation effects.

In the complete design, participants are given each treatment enough times to balance practice effects for each participant. When the task is simple enough and not too time consuming (such as judging traits of people in photographs), it is possible to give one participant several experiences with each treatment. In fact, in some complete designs, only one or two participants are tested, and each participant experiences literally hundreds of trials. More commonly, however, several participants are tested, and each participant is given each treatment only a relatively small number of times. Researchers have two choices in deciding how to arrange the order in which the treatments in a complete design are administered: block randomization and ABBA counterbalancing.

Block Randomization We introduced block randomization in Chapter 6 as an effective technique for assigning participants to conditions in the random groups design. *Block randomization* can also be used to order the conditions for each participant in a complete design. Consider a study on “first impressions” in which participants were asked to rate photographs of people on a personality trait, such as trustworthiness or likeability, and the photos were presented very briefly. Specifically, the researchers used three exposure times in milliseconds (ms): 100 ms, 500 ms, and 1,000 ms (see Willis & Todorov, 2006). With such short presentation times, it would not make sense to use a between-groups experiment. In this experiment, all participants rated 22 faces at each of the three exposure times for a total of 66 face ratings. The experiment was repeated five times, once for each trait, and different participants rated only one personality trait for the 66 photos.
To use a block randomization procedure, the 66 trials would be broken up into 22 blocks of 3 trials. Each block would contain the three conditions of the experiment in a random order. In general, the number of blocks in a block-randomization procedure is equal to the number of times each condition is administered, and the size of the block is equal to the number of conditions in the experiment. The trials might look something like this:

<table>
<thead>
<tr>
<th>Trial</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>64</td>
<td>1000</td>
</tr>
<tr>
<td>65</td>
<td>500</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
</tr>
</tbody>
</table>

To use a block randomization procedure, the 66 trials would be broken up into 22 blocks of 3 trials. Each block would contain the three conditions of the experiment in a random order. In general, the number of blocks in a block-randomization procedure is equal to the number of times each condition is administered, and the size of the block is equal to the number of conditions in the experiment. The trials might look something like this:

<table>
<thead>
<tr>
<th>Trial</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>64</td>
<td>1000</td>
</tr>
<tr>
<td>65</td>
<td>500</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
</tr>
</tbody>
</table>

With the block randomization procedure, it is unlikely that changes in the participants’ attention, motivation, or experience with rating the photographs would affect any one of the exposure conditions more than another. Any one condition is not more likely to appear at the beginning, middle, or end of the 66 trials. The practice effects can reasonably be expected to average out across the three experimental conditions (100, 500, 1,000 ms exposure times). It is important to note that for block randomization to be effective in controlling practice effects, each condition of the experiment must be repeated several times before we can expect practice effects to average out. In our example, each condition appeared 22 times. We would not expect practice effects to be balanced after two or three blocks—any more than we would expect sample sizes of two or three in the random groups design to result in comparable groups. Although more than one order of conditions can be created, typically all participants follow the same block randomization sequence. ¹

In the Willis and Todorov (2006) experiment, each trial was preceded by a fixation point (+) for 500 ms at the center of the screen. After the photo briefly appeared, the participants made a trait judgment (e.g., “yes” or “no” this

¹Perhaps you spotted a confounding in the Willis and Todorov (2006) experiment as we have described it thus far. The 66 photos were divided into three sets (22 photos each) and each set was assigned an exposure time (100, 500, 1,000 ms). For any one participant, this procedure confounded exposure time with the particular set of 22 photos. Is it possible that one set of photos is easier to judge at a faster rate (e.g., 50 ms) than at 1,000 ms? It would be hard to know, but the researchers took no chances and counterbalanced the exposure times so that each set of 22 photos was tested at 50 ms for one third of the participants, 100 ms for another third, and 1,000 ms for the final third.
PART III: Experimental Methods

Results of a study by Willis and Todorov (2006) demonstrate that we need only 1/10 of a second to form a first impression of a person. The photos in their experiment were of actors wearing gray T-shirts, with no distinguishing characteristics such as beards, tattoos, earrings, or eyeglasses. Making responses to all 66 photos took less than 15 minutes.

Although we implied that the investigators used a block randomization procedure, in fact, they presented the 66 photos in a new, computer-generated, random order for each participant. A simple randomization procedure is not as controlled as block randomization, but we can assume that practice effects will generally average out across the random sequences, especially when presentation times are brief. This assumption is strengthened when many random orders are used. Let us explain why.

Block randomization guarantees that each condition of the experiment is represented an equal number of times at all stages of practice (e.g., early, middle, late). However, when a simple randomization procedure is used, it’s possible that one condition may appear more frequently by chance at one stage of practice compared to another. If this occurs, we cannot assume practice effects are balanced across conditions for a participant. When many random sequences are used, however, the chances are less that any one condition will appear more often at the beginning, middle, or end of the trials. Furthermore, any differences in practice effects should be balanced when results are summarized across all the subjects in the experiment. This assumption is similar to that made in the incomplete repeated measures design, which we will consider later. Therefore, unlike a true block randomization procedure, when simple randomization of orders is used to present conditions in an experiment, many different random orders must be used.

The main point is that variations from a true block randomization procedure may be used when it can be argued that practice effects have been balanced across conditions of the experiment. On the other hand, a block randomization procedure makes that argument easy.
The results of their experiment showed that for all five trait judgments (attractiveness, likeability, trustworthiness, competence, and aggressiveness), an increase in exposure time beyond 1/10th of a second (100 ms) did not improve the correlation between participants’ ratings and those made by others who had no time constraints. A tenth of a second is apparently all we need to form an impression of a person (see Figure 7.2). Bear in mind that this does not necessarily mean that the impression is accurate. [See results of a study by Rule et al. (2013) discussed in Chapter 2.]

ABBA Counterbalancing In its simplest form, ABBA counterbalancing can be used to balance practice effects in the complete design with as few as two administrations of each condition. *ABBA counterbalancing* involves presenting the conditions in a random order followed by the opposite of that order. Thus, an even number of repetitions is required. Its name describes the sequences when there are only two conditions (A and B) in the experiment, but ABBA counterbalancing is not limited to experiments with just two conditions. In an experiment with three conditions, the sequence of trials could be ABCCBA. The order of the three conditions on the first three trials is simply reversed for trials 4 to 6 (see Table 7.1).

Several limitations of the ABBA counterbalancing procedure make it less than ideal for many situations. For example, ABBA counterbalancing is appropriately used only when practice effects are linear. If practice effects are linear, the same amount of practice effects is added to or subtracted from performance on each successive trial. The row of Table 7.1 labeled “Practice effect (linear)” illustrates how ABBA counterbalancing can balance practice effects. In this example, one “unit” of hypothetical practice effects is added to performance on each trial. Because there would be no practice effect associated with the first trial, the amount of practice added to Trial 1 in the table is zero. Trial 2 has one unit of hypothetical effects added because of participants’ experience with the first trial; in Trial 3 there are two units added because of participants’ experience with two trials, and so on.

When practice effects are linear, the number of hypothetical “units” of practice is the same for all conditions (see Table 7.1). With three conditions, 5 units are gained for each condition. For example, the Moderate condition gets the least (0) and the greatest (5) influence from practice effects, for a total of 5 units; the sum of hypothetical units is also 5 for the Fast (1 + 4) and Slow (2 + 3) conditions in our example.

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
<th>Trial 5</th>
<th>Trial 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>+0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.1 ABBA COUNTERBALANCED SEQUENCE OF TRIALS IN AN EXPERIMENT WITH THREE PRESENTATION CONDITIONS (FAST, MODERATE, SLOW)
Now consider the bottom row in Table 7.1, labeled Practice effect (nonlinear). The change from the first trial to the second trial is from 0 to 6, indicating a participant’s performance changed dramatically after one trial. Unfortunately, it isn’t always easy to know when this might occur. In this example, the amount of practice associated with the Slow, Moderate, and Fast conditions is not balanced (+6, +12, and +12, respectively). Several “warm-up” trials before actual data collection begins can sometimes offset early abrupt changes in practice effects.

Another limitation of ABBA counterbalancing is when anticipation effects occur. Suppose you are presented the following sequence of conditions:

Mod Fast Slow Slow Fast Mod Mod Fast Slow Slow Fast Mod Mod Fast Slow Slow Fast

Anticipation effects occur when a participant develops expectations about which condition occurs next in the sequence, as we suggest you might when experiencing the above sequence. A participant’s response to a condition may be influenced more by expectations than by the actual experience of the condition itself. We might, for example, imagine a participant “relaxing” after a Slow condition, anticipating a second Slow condition immediately.

To avoid anticipation effects, researchers generally consider ABBA counterbalancing only when the number of conditions and the number of repetitions of each condition are relatively small. This does not, however, avoid potential problems associated with nonlinear practice effects. These concerns, as well as the requirement that an even number of repetitions of conditions is required in an ABBA procedure, make block randomization a better counterbalancing alternative in most complete repeated measure designs. When an experiment calls for only a few repetitions of conditions in a block randomization procedure, the researcher should use more than one random sequence of conditions.

Balancing Practice Effects in the Incomplete Design

- Practice effects are balanced across subjects in the incomplete design rather than for each subject, as in the complete design.
- The rule for balancing practice effects in the incomplete design is that each condition of the experiment must be presented in each ordinal position (first, second, etc.) equally often.
- The best method for balancing practice effects in the incomplete design with four or fewer conditions is to use all possible orders of the conditions.
- Two methods for selecting specific orders to use in an incomplete design are the Latin Square and random starting order with rotation.
- Whether using all possible orders or selected orders, participants should be randomly assigned to the different sequences.

In the incomplete design, each participant is given each treatment only once. The results for any one participant, therefore, cannot be interpreted because the levels of the independent variable for each participant are perfectly confounded with the order in which those levels were presented. For instance, the
first participant in an incomplete design experiment might be tested first in the experimental condition (E) and second in the control condition (C). Any differences in the participant’s performance between the experimental and control conditions could be due to the effect of the independent variable or to the practice effects resulting from the EC order. To break this confounding of the order of conditions and the independent variable, we can administer different orders of the conditions to different participants. For example, we could administer the conditions of our incomplete design experiment to a second participant in the CE order, testing the control condition first and the experimental condition second. In this way, we could balance the effects of order across the two conditions using two participants instead of one.

To illustrate the techniques for balancing effects in the incomplete repeated measures design, we can look at an important body of research literature examining the effects of stigma on people’s willingness to seek help for mental disorders, including substance, alcohol, and gambling addictions. Fear of being labeled “mentally ill” prevents many individuals who experience psychological problems from seeking help (Figure 7.3). Researchers generally distinguish two types of stigma: public and personal (Corrigan, 2004). Public stigma refers to the negative stereotypes and prejudice that exist in society against persons with mental illness (e.g., the belief that “Mentally ill people are dangerous”). Personal stigma refers to an individual’s own attitudes, as when someone internalizes the public stigma (e.g., “I would think less of myself if I sought treatment for mental illness”). Much of the research on stigma is done using survey

FIGURE 7.3 Public stigma toward many psychological disorders, including gambling, substance, and alcohol addictions, is a major obstacle preventing individuals from seeking help.
methodology. For example, an online survey of more than 5,000 college students showed that personal stigma is higher among men than women, with black and Asian students showing greater personal stigma than white students (Eisenberg, Downs, Golberstein, & Zivin, 2009).

Another major approach to investigating stigma toward mental illness uses vignettes, in which research participants are asked to read brief descriptions of individuals with psychological disorders. Participants then rate their feelings, such as anger, distrust, fear, and avoidance, and perhaps respond to questions about their level of familiarity with people suffering from the condition described in the vignette. Occasionally, only one vignette is used in a study (e.g., Bathje & Pryor, 2011). However, it is often the case that research participants are asked to respond to several vignettes, allowing researchers to compare attitudes across different disorders. In one study, participants read five vignettes describing women with anorexia, bulimia, binge eating, obesity, or a major depressive disorder. Participants blamed women with eating disorders more for their condition than women with major depression, and held the person with obesity most responsible for her condition (Ebneter & Latner, 2013).

Asking participants to respond to more than one vignette is an efficient way to obtain data and permits comparisons among targets with different attributes. For example, researchers who investigated Canadian college students’ stigma of gambling disorders included vignettes of individuals with cancer, schizophrenia, and alcohol dependence for comparison (Horch & Hodgins, 2008). Because participants view each vignette only one time, studies using vignettes are examples of an incomplete repeated measures design.

In an incomplete design it is essential that practice effects be balanced by varying the order in which the conditions are presented. The general rule for balancing practice effects in the incomplete design is a simple one: Each condition of the experiment must appear in each ordinal position (1st, 2nd, 3rd, etc.) equally often. Several techniques are available for satisfying this general rule. These techniques differ in what additional balancing they accomplish, but so long as the techniques are properly used, the basic rule will be met and the experiment will be interpretable. That is, if appropriate balancing is carried out, then we will be in a position to determine whether the independent variable, not practice effects, influenced the participants’ behavior.

All Possible Orders The preferred technique for balancing practice effects in the incomplete design is to use all possible orders of the conditions. Each participant is randomly assigned to one of the orders. With only two conditions there are only two possible orders (AB and BA); with three conditions there are six possible orders (ABC, ACB, BAC, BCA, CAB, CBA). In general, there are \(N! \) (which is read “\(N \) factorial”) possible orders with \(N \) conditions, where \(N! \) equals \(N(N-1)(N-2)\ldots(N-[N-1]) \). As we just saw, there are six possible orders with three conditions, which is 3! (\(3 \times 2 \times 1 = 6 \)). The number of required orders increases dramatically with increasing numbers of conditions. For instance, for five conditions there are 120 possible orders, and for six conditions there are 720 possible orders. Because of this, the use of all possible orders is usually limited to experiments involving four or fewer conditions.
TABLE 7.2 ALTERNATIVE TECHNIQUES TO BALANCE PRACTICE EFFECTS IN AN INCOMPLETE REPEATED MEASURES DESIGN EXPERIMENT WITH FOUR CONDITIONS

<table>
<thead>
<tr>
<th>Selected Orders</th>
<th>All Possible Orders</th>
<th>Latin Square</th>
<th>Random Starting Order with Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinal Position</td>
<td>Ordinal Position</td>
<td>Ordinal Position</td>
<td>Ordinal Position</td>
</tr>
<tr>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
</tr>
<tr>
<td>G</td>
<td>S</td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>G</td>
<td>S</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>N</td>
<td>S</td>
</tr>
<tr>
<td>G</td>
<td>N</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>N</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>G</td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>S</td>
<td>G</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>S</td>
<td>C</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>S</td>
<td>N</td>
<td>C</td>
<td>G</td>
</tr>
</tbody>
</table>

Note: The four conditions represent type of vignette in a stigma experiment: Gambling (G), Schizophrenia (S), Cancer (C), and Neutral (N).

Consider how the investigators studying stigma might counterbalance practice effects. Let us assume there are four vignettes describing individuals with a gambling disorder, cancer, schizophrenia, or mild, nonclinical stress (neutral condition). A total of 24 sequences would be required to obtain all possible orders of conditions. These sequences (orders of conditions) are presented in the left half of Table 7.2. Using all possible orders meets the general rule of ensuring that all conditions appear in each ordinal position equally often. The first ordinal position shows this balancing most clearly: The first six sequences begin with the gambling disorder (G) condition, and each of the next six sequences begins with the schizophrenia (S), then cancer (C), and neutral (N) conditions. This same pattern applies at each of the four ordinal positions. For example, the G condition also appears six times each in the second, third, and fourth ordinal positions. The same is true for the S, C, and N conditions.

There is one other issue that must be addressed in deciding to use all possible orders. For this technique to be effective, it is essential that at least one participant be tested with each of the possible orders of the conditions. That is, at least one participant should receive the G-S-C-N order, at least one should receive the G-S-N-C order, and so on. Therefore, the use of all possible orders requires at least as many participants as there are possible orders. Thus, if there are four conditions in the experiment, at least 24 participants are needed (or 48, or 72, or some other multiple of 24). This restriction makes it very important that a researcher has a good idea of the number of potential participants available before testing the first participant.
Selected Orders We have just described the preferred method for balancing practice effects in the incomplete design, all possible orders. There are times, however, when the use of all possible orders is not practical. For example, if we wanted to use the incomplete design to study an independent variable with seven levels, we would need to test 5,040 participants if we used all possible orders—one participant for each of the possible orders of the seven conditions (7! orders). We obviously need some alternative to using all possible orders if we are to use the incomplete design for experiments with five or more conditions.

Practice effects can be balanced by using just some of all the possible orders. The number of selected orders will always be equal to some multiple of the number of conditions in the experiment. For example, to do an experiment with one independent variable with seven levels, we need to select 7, 14, 21, 28, or some other multiple of seven orders to balance practice effects. The two basic variations of using selected orders are illustrated in Table 7.2. To allow you to compare the types of balancing more directly, we have illustrated the techniques for selected orders with the four-level independent variable from the stigma experiment that we described in the previous section.

The first type of balancing using selected orders is called the Latin Square. In a Latin Square, the general rule for balancing practice effects is met. That is, each condition appears at each ordinal position once. For example, just to the right of the center of Table 7.2, we can see that in the Latin Square, condition “G” appears exactly once in the first, second, third, and fourth ordinal positions. This is true for each condition. Additionally, in a Latin Square each condition precedes and follows each other condition exactly once. Examination of the Latin Square in Table 7.2 shows that the order “G-S” appears once, as does the order “S-G.” The order “S-C” appears once, as does the order “C-S,” and so on, for every combination of conditions. (The procedure for constructing a Latin Square is described in Box 7.2.)

The second balancing technique using selected orders requires you to begin with a random order of the conditions and to rotate this sequence systematically with each condition moving one position to the left each time (see the example on the right in Table 7.2). Using a random starting order with rotation effectively balances practice effects because, like the Latin Square, each condition appears in each ordinal position. However, the systematic rotation of the sequences means that each condition always follows and always precedes the same other conditions (e.g., N always comes after C and before G), which is not like the Latin Square technique. The simplicity of the random starting order with rotation technique and its applicability to experiments with more than four conditions are its primary advantages.

The use of all possible orders, Latin Squares, and random starting orders with rotation are equally effective in balancing practice effects because all three techniques ensure that each condition appears in each ordinal position equally often. Regardless of which technique one uses to balance practice effects, the sequences of conditions should be fully prepared prior to testing the first participant, and participants should be randomly assigned to these sequences.
CHAPTER 7: Repeated Measures Designs

A simple procedure for constructing a square with an even number \(N \) of conditions is as follows:

1. Randomly order the conditions of the experiment.
2. Number the conditions in your random order 1 through \(N \).

 Thus, if you had \(N = 4 \) conditions (A, B, C, D) and the random order (from Step 1) was B, A, D, C, then B = 1, A = 2, D = 3, C = 4.

3. To generate the first row (first order of conditions), use the rule

 \[1, 2, N, 3, N - 1, 4, N - 2, 5, N - 3, 6, \text{ etc.} \]

 In our example, this would yield 1, 2, 4, 3.

4. To generate the second row (second order of conditions), add 1 to each number in the first row but with the understanding that 1 added to \(N \) equals 1.

 We would then have 2, 3, 1, 4.

5. The third row (third order of conditions) is generated by adding 1 to each number in the second row and again \(N + 1 = 1 \).

 The third row would be 3, 4, 2, 1.

6. A similar procedure is carried out for each successive row.

Can you construct the fourth row in this \(4 \times 4 \) square?

7. Assign the conditions to their corresponding numbers as determined in Step 2.

The Latin Square for this example would be

\[
\begin{array}{cccc}
B & A & C & D \\
A & D & B & C \\
D & C & A & B \\
C & B & D & A \\
\end{array}
\]

If there is an odd number of conditions, then two squares must be constructed. The first can be made according to the rule given above for even-numbered squares. The second square is generated by reversing the rows in the first square. For example, assume \(N = 5 \) and the first row of the first square is B A E C D. The first row of the second square would then be D C E A B. The two squares are joined to make an \(N \times 2N \) square. In either case, even or odd, subjects should be assigned randomly to the rows of the square. Thus, you must have available at least as many subjects as there are multiples of rows. (Procedures for selecting or constructing Latin Squares are also described in Winer, Brown, and Michels [1991, pp. 674–679].)

Data Analysis of Repeated Measures Designs

Describing the Results

- Data analysis for a complete design begins with computing a summary score (e.g., mean, median) for each participant.
- Descriptive statistics are used to summarize performance across all participants for each condition of the independent variable.

After checking the data for errors and outliers, the first step in analyzing a repeated measures experiment is to summarize participants’ performance in each condition of the experiment. In random groups designs, this means simply listing the scores of the participants tested in each of the conditions of the experiment and then summarizing these scores with descriptive statistics such as the mean and standard deviation. In an incomplete repeated measures design, each participant provides one score in each condition, but it is still relatively straightforward to summarize the scores for each condition. Once all the scores
for each condition have been listed together, means and standard deviations can be computed to describe performance in each condition.

An additional step is needed when analyzing a complete repeated measures design. You first must compute a score for each participant in each condition before you begin to summarize and describe the results. This additional step is necessary because each participant is tested in each condition more than once in a complete design. For example, suppose five participants were tested in a time-perception experiment done as a classroom demonstration of a complete repeated measures design. The purpose of the experiment was not to test the accuracy of participants’ time estimates compared with the actual interval lengths. Instead, the purpose of the experiment was to determine whether participants’ estimates of time increased systematically with increasing lengths. In other words, could participants discriminate between intervals of different lengths?

Each participant in the experiment was tested six times on each of four interval lengths (12, 24, 36, and 48 seconds). Block randomization was used to determine the order in which the intervals were presented. Thus, each participant provided 24 time estimates, six estimates for each of the four interval lengths. Any one of the six estimates for a given time interval is contaminated by practice effects, so some measure that combines information across the six estimates is needed. Typically, the mean across the six estimates for each interval would be calculated for each participant to provide a single estimate of performance in each condition. As you may remember, however, extreme scores can influence the mean; it is quite possible that participants gave extreme estimates of the time intervals for at least one of the six tests of each interval. Thus, for this particular set of data, the median of the six estimates probably provides the best measure to reflect the participants’ estimates of the time intervals. These median estimates (rounded to the nearest whole number) are listed in Table 7.3. (You may be used to seeing the mean and median as descriptive statistics summarizing a group’s performance; however, as this example illustrates, these summary statistics also can be used to represent one person’s performance when that performance is an “average” across trials or tests.)

<table>
<thead>
<tr>
<th>TABLE 7.3 DATA MATRIX TABLE FOR A REPEATED MEASURES DESIGN EXPERIMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Matrix</td>
</tr>
<tr>
<td>Interval Length</td>
</tr>
<tr>
<td>Participant</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
</tbody>
</table>

Note: Each value in the table represents the median of the participants’ six responses at each level of the interval length variable. The means in the bottom row are the averages of the medians (from six responses made by the five participants at each interval length).
Once an individual score for each participant in each condition has been obtained, the next step is to summarize the results across participants, using appropriate descriptive statistics. The mean estimate and standard deviation (SD) for each of the four intervals are listed in the row labeled “Mean (SD)” in Table 7.3. Even though the data for only five participants are included in the table, these mean estimates indicate that participants appear to have discriminated between intervals of different lengths, at least for intervals up to 36 seconds.

As we mentioned in Chapter 6, it is a good idea to include measures of effect size when describing the results of an experiment. A typical measure of effect size for a repeated measures design is the strength of association measure called eta squared (η^2). The value of eta squared for the time-perception experiment was .80. This value indicates that a large proportion of variation in participants’ time estimates can be accounted for by the independent variable of interval length. You can find more information about the calculation of effect sizes and their interpretation in Chapters 11 and 12. In Chapter 12 we illustrate how to calculate eta squared using the data found in Table 7.3.

Confirming What the Results Reveal

- The general procedures and logic for null hypothesis testing and for confidence intervals for repeated measures designs are similar to those used for random groups designs.

Data analysis for experiments using repeated measures designs involves the same general procedures we described in Chapter 6 for the analysis of random groups design experiments. Researchers use null hypothesis testing and confidence intervals to make claims about whether the independent variable produced an effect on behavior. We will use the time-perception experiment to illustrate how researchers confirm what the data reveal when they use repeated measures designs.

The focus of the analysis of the time-perception experiment was on whether the participants could discriminate intervals of different lengths. We cannot make the claim that participants were able to discriminate intervals of varying lengths until we know that the mean differences in Table 7.3 are greater than would be expected on the basis of error variation alone. That is, even though it may appear that participants were able to discriminate between the different intervals, we do not know if their performance was different from that which would occur by chance. Thus, we must consider using analytical tools of null hypothesis testing and the construction of confidence intervals to help us make a decision about the effectiveness of the independent variable.

One distinctive characteristic of the analysis of repeated measures designs is the way in which error variation is estimated. We described in Chapter 6 that for the random groups design, individual differences among participants within the groups provides an estimate of error variation. In repeated measures designs, however, differences among participants are not just balanced—they
STRETCHING EXERCISE

For this exercise you are to compute the mean for each level of the independent variable in this complete repeated measures design. You must first compute a summary score for each participant in each condition before you summarize and describe the results for the three conditions.

In a perception experiment, three participants were tested for their ability to identify complex visual patterns. On each presentation the participants briefly viewed a complex pattern (target), followed by a test with a set of four patterns (the target and three other similar patterns). Their task was to pick out the target pattern from the set. The independent variable was the delay between the target and the test, with three levels: 10s, 30s, 50s. On each of six trials, participants made 50 judgments at one level of the independent variable. The table shows the ABBA counterbalanced sequence of trials for each participant on each trial. The values in parentheses represent the number of errors (the dependent variable) made by each participant on each trial (50 max.). Use this table to describe the effect of the delay independent variable on the number of errors.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
<th>Trial 5</th>
<th>Trial 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30s (9)</td>
<td>50s (6)</td>
<td>10s (2)</td>
<td>10s (6)</td>
<td>50s (10)</td>
<td>30s (3)</td>
</tr>
<tr>
<td>2</td>
<td>50s (10)</td>
<td>30s (6)</td>
<td>10s (2)</td>
<td>10s (4)</td>
<td>30s (8)</td>
<td>50s (8)</td>
</tr>
<tr>
<td>3</td>
<td>10s (1)</td>
<td>50s (6)</td>
<td>30s (7)</td>
<td>30s (3)</td>
<td>50s (8)</td>
<td>10s (3)</td>
</tr>
</tbody>
</table>

are actually eliminated from the analysis. The ability to eliminate systematic variation due to participants in repeated measures designs makes these designs generally more sensitive than random groups designs. The source of error variation in the repeated measures designs is the differences in the ways the conditions affect different participants.

The fact that error variation is estimated differently in a repeated measures design than it is in an independent groups design means that the calculation of the t-test and F-test used in null hypothesis testing also differs. Similarly, confidence intervals are calculated differently. In Chapter 12 we use the data in Table 7.3 to show how both the F-test and confidence intervals are used in decision making as part of a repeated measures design. The null hypothesis for an analysis of the data in Table 7.3 is that the population means, estimated by the sample means, are the same across interval-length conditions. Having carried out an analysis of variance for these data (see Chapter 12), we can tell you that the probability associated with the F-test for the effect of interval length was $p = .0004$. Because this obtained probability is less than the conventional level of significance (.05), the effect of the interval length variable was statistically significant. Based on this outcome, we can make the claim that participants’ time estimates did differ systematically as a function of interval length. We already know from our calculation of the effect size ($\eta^2 = .80$) that it represents a large effect.
In Chapter 12 we used the same data to calculate .95 confidence intervals for the means seen in Table 7.3. The confidence intervals (in seconds) for the four conditions are (12) 5.4–19.8; (24) 14.8–29.2; (36) 30.8–45.2; (48) 32.2–46.6. As you learned in Chapter 6 (see also Box 11.5), when intervals do not overlap, we can claim that the population means estimated by the sample means are different. Does an inspection of these intervals tell you which means would be judged to be different? A convenient way to examine the relationship among confidence intervals is to plot them in a graph. For example, take a look at Figure 12.2 in Chapter 12, in which the intervals presented here are plotted around the sample means obtained in the time estimation experiment.

The Problem of Differential Transfer

- Differential transfer occurs when the effects of one condition persist and influence performance in subsequent conditions.
- Variables that may lead to differential transfer should be tested using a random groups design because differential transfer threatens the internal validity of repeated measures designs.
- Differential transfer can be identified by comparing the results for the same independent variable when tested in a repeated measures design and in a random groups design.

Researchers can overcome the potential problem of practice effects in repeated measures designs by using appropriate techniques to balance practice effects. There is a much more serious potential problem that can arise in repeated measures designs that is known as differential transfer (Poulton, 1973, 1975, 1982; Poulton & Freeman, 1966). **Differential transfer** arises when performance in one condition differs depending on the condition that precedes it.

Consider a problem-solving experiment in which two types of instructions are being compared in a repeated measures design. One set of instructions (A) is expected to enhance problem solving, whereas the other set of instructions (B) serves as the neutral control condition. It is reasonable to expect that participants tested in the order AB will be unable or unwilling to abandon the approach outlined in the A instructions when they are supposed to be following the B instructions. Giving up the “good thing” participants had under instruction A would be the counterpart of successfully following the admonition “Don’t think of pink elephants!” When participants fail to give up the instruction from the first condition (A) while they are supposed to be following instruction B, any difference between the two conditions is reduced. For those participants, after all, condition B was not really tried. The experiment becomes a situation in which participants are tested in an “AA” condition, not an “AB” condition.

In general, the presence of differential transfer threatens internal validity because it becomes impossible to determine if there are true differences between the conditions. It also tends to underestimate differences between the
conditions and thereby reduces the external validity of the findings. Therefore, when differential transfer could occur, researchers should choose an independent groups design. Differential transfer is sufficiently common with instructional variables to advise against the use of repeated measures designs for these studies (Underwood & Shaughnessy, 1975). Unfortunately, differential transfer can arise in any repeated measures design. For instance, researchers must look for possible order effects when vignettes are used to study stigma toward various health problems. In one study, participants responded differently to a vignette describing a person with cancer when it came first rather than later in the sequence (Horch & Hodgins, 2008). There are ways, however, to determine whether differential transfer is likely to have occurred.

One way to determine if differential transfer has occurred in an incomplete repeated measures design is to examine the results for the first ordinal position only. For example, in the stigma experiment with four vignettes, one-fourth of the participants receive the gambling condition first, one-fourth receive the schizophrenia condition first, and so on. Thus, as shown in the all possible orders and selected orders in Table 7.2, the first ordinal position represents an independent groups design with four groups. If there are sufficient numbers of participants, the researcher can analyze the effect of the independent variable for these four groups, and then compare the findings to those observed for the entire repeated measures design. If the findings differ, it’s possible that differential transfer occurred.

The best way to determine whether differential transfer is a problem is to do two separate experiments (Poulton, 1982). The same independent variable would be studied in both experiments, but a random groups design would be used in one experiment and a repeated measures design in the other. The random groups design cannot possibly involve differential transfer because each participant is tested in only one condition. If the experiment using a repeated measures design shows the same effect of the independent variable as that shown in the random groups design, then there has likely been no differential transfer. If the two designs show different effects for the same independent variable, however, differential transfer is likely to be responsible for producing the different outcome in the repeated measures design. When differential transfer does occur, the results of the random groups design should be used to provide the best description of the effect of the independent variable.

Summary

Repeated measures designs provide an effective and efficient way to conduct an experiment by administering all the conditions in the experiment to each participant (see Figure 7.4). Repeated measures designs are useful when only very few participants are available or when an independent variable can be studied most efficiently by testing fewer participants several times. Repeated measures designs are generally more sensitive experiments. Finally, particular areas of psychological research (e.g., psychophysics) may require the use of repeated measures designs.
For any repeated measures design experiment to be interpretable, however, practice effects must be balanced. Practice effects are changes that participants undergo because of repeated testing. In a complete repeated measures design, practice effects are balanced for each participant. Block randomization and ABBA counterbalancing can be used to balance practice effects in a complete repeated measures design. ABBA counterbalancing should not be used, however, if practice effects are expected to be nonlinear or if anticipation effects are likely.

In an incomplete repeated measures design, each participant receives each treatment only once, and the balancing of practice effects is accomplished across participants. Techniques for balancing practice effects in an incomplete repeated measures design involve either the use of all possible orders or selected orders (the Latin Square and rotation of a random starting order).

The process of data analysis of the results of repeated measures designs is essentially the same as that for analyzing the results of random groups designs. An added step for the complete repeated measures design is that each participant’s scores first must be summarized within each condition. The data are examined for errors and then summarized using descriptive statistics such as the mean, standard deviation, and measures of effect size. Null hypothesis testing and confidence intervals are used to make claims that the independent variable has produced an effect on behavior.

The most serious problem in any repeated measures design is differential transfer—when performance in one condition differs depending on which condition it follows. Procedures for detecting the presence of differential transfer are available, but there is little that can be done to salvage a study in which it occurs.
PART III: Experimental Methods

Key Concepts

- repeated measures designs 220
- counterbalancing 224
- sensitivity 221
- differential transfer 237
- practice effects 223

Review Questions

1. Describe what is balanced in a random groups design and what is balanced in a repeated measures design.
2. Briefly describe four reasons why researchers would choose to use a repeated measures design.
3. Define sensitivity and explain why repeated measures designs are often more sensitive than random groups designs.
4. Distinguish between a complete design and an incomplete design for repeated measures designs.
5. What options do researchers have in balancing practice effects in a repeated measures experiment using a complete design?
6. Under what two circumstances would you recommend against the use of ABBA counterbalancing to balance practice effects in a repeated measures experiment using a complete design?
7. State the general rule for balancing practice effects in repeated measures experiments using an incomplete design.
8. Briefly describe the techniques that researchers can use to balance practice effects in the repeated measures experiments using an incomplete design. Identify which of these techniques is preferred and explain why.
9. Explain why an additional initial step is required to summarize the data for an experiment involving a complete repeated measures design.
10. Describe how researchers can determine if differential transfer has occurred in a repeated measures experiment.

Challenge Questions

1. The following problems represent different situations in the repeated measures designs in which practice effects need to be balanced.

 A Consider a repeated measures experiment using a complete design involving one independent variable. The independent variable in the experiment is task difficulty with three levels (Low, Medium, and High). You are to prepare an order for administering the conditions of this experiment so that the independent variable is balanced for practice effects. You are first to use block randomization to balance practice effects and then to use ABBA counterbalancing to balance practice effects. Each condition should appear twice in the order you prepare. (You can use the first row of the random number table (Table A.1) in the Appendix to determine your two random orders for block randomization.)

2. A student working as an intern at an advertising agency is assigned the task of evaluating people’s first impressions of a new ad. The agency prepared four photos of a client’s product, a new model of car. The car is pictured in four different scenes thought to highlight features of the car for potential customers (e.g., parked near suburban home, traveling scenic highway). The intern decides...
to show the four photos to people she selects randomly from shoppers at a mall. The persons selected are offered five dollars to look at each photo and judge whether they think the photo would make a good ad for this car. Each of the four photos is shown for 100 ms on a laptop screen and the participant uses the number keys 1 through 5 to indicate preference (1 = not good at all to 5 = excellent ad for this car). The participants are asked to make their first-impression judgments as quickly as they can after seeing each photo. In addition to the ratings, the time to make each judgment is measured.

A What design is being used to examine the effect of the different photos?

B Prepare a Latin Square to balance practice effects across the conditions of this experiment. (Label the photos A, B, C, and D.)

C Suppose the intern decides to use all possible orders to balance practice effects and assigns one participant to each of the 24 possible orders of the conditions. Consider only the first ordinal position of this experiment (i.e., the first photo each participant saw). Which experimental design is used when you look only at the first ordinal position across the 24 participants? How many participants are in each of the four conditions?

D Considering your answer to part C, how could the intern test whether differential transfer occurred when all possible orders are used to balance practice effects?

3 The following table represents the order of administering the conditions to participants in a repeated measures experiment using an incomplete design in which the independent variable was the difficulty level of a children’s electronic puzzle game. Four-year-old children used a tablet to play a game requiring them to find hidden figures in three difficulty levels. The levels of difficulty were defined by the size of the figures embedded in the pictures displayed on the screen: extremely small (ES), very small (VS), and small (S). The dependent variable was the number of figures found by a child at each of the three difficulty levels (maximum = 10). Six children were tested, and the values in the table indicate the number of figures found at each level of difficulty. Use the table to answer the questions below.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Order of Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ES (2) VS (9) S (9)</td>
</tr>
<tr>
<td>2</td>
<td>VS (3) S (5) ES (7)</td>
</tr>
<tr>
<td>3</td>
<td>S (4) ES (3) VS (5)</td>
</tr>
<tr>
<td>4</td>
<td>ES (6) S (10) VS (8)</td>
</tr>
<tr>
<td>5</td>
<td>VS (7) ES (8) S (6)</td>
</tr>
<tr>
<td>6</td>
<td>S (8) VS (4) ES (4)</td>
</tr>
</tbody>
</table>

A What method was used to balance practice effects in this experiment?

B Present the values you would use to describe the overall effect of the difficulty variable. Include a verbal description of the effect along with the descriptive statistics that you use as a basis of your description.

C What claim would you make about the effect of the difficulty variable if the probability associated with the F-test for the effect of the difficulty variable was $p = .04$?

Answer to Stretching Exercise

The first step is to compute a mean for each participant for each level of the independent variable by averaging responses across the two trials for the same condition. For Participant 1 the means for the three conditions are

- 10s: $\frac{(2 + 6)}{2} = 4$
- 30s: $\frac{(9 + 3)}{2} = 6$
- 50s: $\frac{(6 + 10)}{2} = 8$

For Participant 2 the means for the three conditions are 3 (10s), 7 (30s), and 9 (50s), and for Participant 3 the means are 2 (10s), 5 (30s), and 7 (50s).

The next step is to compute the means for each condition by averaging the summary scores for each participant:

- 10s: $\frac{(4 + 3 + 2)}{3} = 3$
- 30s: $\frac{(6 + 7 + 5)}{3} = 6$
- 50s: $\frac{(8 + 9 + 7)}{3} = 8$
We can now describe the effect of the independent variable, delay between target and test, on the dependent variable, number of errors. The means indicate that the number of errors on the pattern-identification task increased as the delay between target and test increased. Inferential statistics using null hypothesis testing or confidence intervals could be done to confirm whether the delay variable produced a reliable effect.

Answer to Challenge Question 1

A Assigning the values 1, 2, and 3 to the Low, Medium, and High conditions, respectively, and using the first row of the random number table (Table A.1) in the Appendix beginning with the first number in the row, the block-randomized sequence is Low-High-Medium-Low-Medium-High. One possible ABBA counterbalanced sequence is Low-Medium-High-High-Medium-Low.

B Because there are six conditions, all possible orders are not feasible. Therefore, either a Latin Square or a random starting order with rotation is needed to balance practice effects. A possible set of sequences using rotation is

<table>
<thead>
<tr>
<th>Position</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Participant 2</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Participant 3</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Participant 4</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Participant 5</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Participant 6</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
CHAPTER EIGHT

Complex Designs

CHAPTER OUTLINE

OVERVIEW

DESCRIBING EFFECTS IN A COMPLEX DESIGN
An Example of a 2×2 Design
Main Effects and Interaction Effects
Describing Interaction Effects
Complex Designs with Three Independent Variables

ANALYSIS OF COMPLEX DESIGNS
Analysis Plan with an Interaction Effect
Analysis Plan with No Interaction Effect

INTERPRETING INTERACTION EFFECTS
Interaction Effects and Theory Testing
Interaction Effects and External Validity
Interaction Effects and Ceiling and Floor Effects
Interaction Effects and the Natural Groups Design

SUMMARY
Overview

In Chapters 6 and 7 we focused on the basic experimental designs that researchers use to study the effect of an independent variable. We described how an independent variable could be implemented with a separate group of participants in each condition (independent groups designs) or with each participant experiencing all the conditions (repeated measures designs). We limited our discussion to experiments involving only one independent variable because we wanted you to concentrate on the basics of experimental research. Experiments involving only one independent variable are not, however, the most common type of experiment in contemporary psychological research. Instead, researchers most often use complex designs in which two or more independent variables are studied simultaneously in one experiment.

Complex designs can also be called factorial designs because they involve factorial combination of independent variables. Factorial combination involves pairing each level of one independent variable with each level of a second independent variable. This makes it possible to determine the effect of each independent variable alone (main effect) and the effect of the independent variables in combination (interaction effect).

Complex designs may seem a bit complicated at this point, but the concepts will become clearer as you progress through this chapter. We begin with a review of the characteristics of experimental designs that can be used to investigate independent variables in a complex design. We then describe the procedures for producing, analyzing, and interpreting main effects and interaction effects. We introduce the analysis plans that are used for complex designs. We conclude the chapter by giving special attention to the interpretation of interaction effects in complex designs.

Describing Effects in a Complex Design

- Researchers use complex designs to study the effects of two or more independent variables in one experiment.
- In complex designs, each independent variable can be studied with an independent groups design or with a repeated measures design.
- The simplest complex design is a 2×2 design—two independent variables, each with two levels.
- The number of different conditions in a complex design can be determined by multiplying the number of levels for each independent variable (e.g., $2 \times 2 = 4$).
- More powerful and efficient complex designs can be created by including more levels of an independent variable or by including more independent variables in the design.

An experiment with a complex design has, by definition, more than one independent variable. Each independent variable in a complex design must be implemented using either an independent groups design or a repeated measures design according to the procedures described in Chapters 6 and 7.
When a complex design has both an independent groups variable and a repeated measures variable, it is called a *mixed design*.

The simplest possible experiment involves one independent variable manipulated at two levels. Similarly, the simplest possible complex design experiment involves two independent variables, each with two levels. Complex designs are identified by specifying the number of levels of each of the independent variables in the experiment. A 2×2 (which is read “2 by 2”) design, then, identifies the most basic complex design. Conceptually, there is an unlimited number of complex designs because any number of independent variables can be studied and each independent variable can have any number of levels. In practice, however, it is unusual to find experiments involving more than four or five independent variables, and two or three is more typical. Regardless of the number of independent variables, the number of conditions in a complex design can be determined by multiplying the number of levels of the independent variables. For example, if there are two independent variables with each having two levels (a 2×2 design), there are four conditions. In a 3×3 design there are two independent variables with three levels each, so there are nine conditions. In a $3 \times 4 \times 2$ design there are three independent variables with three, four, and two levels, respectively, and a total of 24 conditions. The primary advantage of all complex designs is the opportunity they provide for identifying interactions between independent variables.

Understanding the 2×2 design lays a foundation for understanding complex designs. The 2×2 design barely scratches the surface, however, when it comes to tapping the potential of complex designs. Complex designs can be extended beyond the 2×2 design in one of two ways. Researchers can add levels to one or both of the independent variables in the design, yielding designs such as the 3×2, the 3×3, the 4×2, the 4×3, and so on. Researchers can also build on the 2×2 design by increasing the number of independent variables in the same experiment. The number of levels of each variable can range from 2 to some unspecified upper limit. The addition of a third or fourth independent variable yields designs such as the $2 \times 2 \times 2$, the $3 \times 3 \times 3$, the $2 \times 2 \times 4$, the $2 \times 3 \times 3 \times 2$, and so on.

First we will illustrate main effects and interaction effects in the complex design by working through an example of a 2×2 design.

An Example of a 2×2 Design

The nature of main effects and interaction effects is essentially the same in all complex designs, but they can be seen most easily in a 2×2 design. For an example of this design we will draw from the rich literature in the field of psychology and law. There are few areas in the legal arena that have gone untouched by social scientists. Jury selection, the nature and credibility of eyewitnesses, race of the defendant, jury decision making, and attorney arguments are only some of the many topics investigated by researchers. We will consider a study in which the researchers looked at variables that might lead to false confessions from suspects brought in for questioning.
Kassin, Goldstein, and Savitsky (2003) used a 2×2 design to investigate whether interrogators’ expectations regarding a suspect’s guilt or innocence influence the interrogation tactics they use. Kassin and his colleagues have conducted many studies to identify factors that lead to false confessions by innocent people. In the present study, the researchers hypothesized that one potential reason for false confessions is that interrogators have a *confirmation bias* in which their initial beliefs about a suspect’s guilt cause them to interrogate more aggressively, ask questions in a manner that presumes guilt, and cause suspects to behave defensively (which is then interpreted as guilt). In general, this behavioral confirmation theory has three parts: (1) the perceiver forms a belief about a target person; (2) the perceiver behaves toward the person in ways that are consistent with the belief; and (3) the target person then responds in ways that support the perceiver’s belief. Ultimately, in the criminal justice context the end result of this process can be a confession of guilt by an innocent person.

Kassin and his colleagues (2003) tested the behavioral confirmation theory in a clever experiment involving college student participants. Pairs of students participated as interrogators and suspects. “Interrogators” were asked to play the role of a detective trying to solve a case in which 100 was stolen from a locked cabinet. Students who played the role of “suspects” followed a set of instructions that placed them at the scene of the theft prior to the interrogation. All suspects were instructed to convince the interrogator of their innocence and not to confess to the theft. Interrogators were given the conflicting goals of trying to obtain a confession but also to determine whether the suspect was actually guilty or innocent.

First Independent Variable: Suspect Status Because suspects’ behavior in an actual interrogation is influenced by whether or not they actually committed the crime, the researchers manipulated students’ actual guilt or innocence using the independent variable, *suspect status*, with two levels. In the *guilty* condition, students were asked to commit a mock theft in which they followed instructions to enter a room, find a key hidden behind a VCR, use the key to open a cabinet, take 100, return the key, and leave with the 100. Students in the *innocent* condition were asked to approach the same room, knock on the door, wait for an answer (which did not occur), and then meet the experimenter. Half of the student-suspects were randomly assigned to the guilty role and half were assigned to the innocent role.

Second Independent Variable: Interrogator Expectation In order to create a confirmation bias among interrogators, the researchers manipulated the independent variable, *interrogator expectation*, with two levels. Half of the student interrogators were randomly assigned to the *guilty expectation* condition, in which the experimenter said that 4 out of 5 suspects in the experiment actually committed the crime. These research participants were led to believe that their chances of interrogating a guilty suspect were high (80% likelihood). In the *innocent expectation* condition, interrogators were told their chance of interrogating a guilty suspect was low because only 1 out of 5 suspects (20%) actually committed the theft.
Factorial Combination of Two Independent Variables
Factorial combination of the two independent variables created four conditions in this 2×2 complex design:

1. Actual guilt/Guilty expectation
2. Actual guilt/Innocent expectation
3. Actual innocence/Guilty expectation
4. Actual innocence/Innocent expectation

Keep in mind that each group formed by the combination of variables represents a random group of participants. The design looks like this:

<table>
<thead>
<tr>
<th>Suspect Status</th>
<th>Interrogator Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual guilt</td>
<td>Guilty 1</td>
</tr>
<tr>
<td>Actual innocence</td>
<td>Innocent 2</td>
</tr>
</tbody>
</table>

The researchers measured several dependent variables to test the behavioral confirmation theory. For example, they measured dependent variables for the interrogators and suspects, and for new, additional participants who listened to the tape-recorded interrogations (much like potential jurors might hear). We will focus on three dependent variables from their experiment to illustrate main effects and interactions. Let’s see what they found.

Main Effects and Interaction Effects

- The overall effect of each independent variable in a complex design is called a main effect and represents the differences among the average performance for each level of an independent variable collapsed across the levels of the other independent variable.
- An interaction effect between independent variables occurs when the effect of one independent variable differs depending on the levels of the second independent variable.

In any complex factorial design it is possible to test predictions regarding the overall effect of each independent variable in the experiment while ignoring the effect of the other independent variable(s). The overall effect of an independent variable in a complex design is called a **main effect**. We will examine two main effects Kassin and his colleagues observed in their experiment for two different dependent variables.

Dependent Variable #1: Number of Guilt-Presumptive Questions
Prior to their interrogation of the suspect, student interrogators were given information about interrogation techniques, including a list of possible questions they could ask about the theft. Twelve questions were written as pairs (but presented randomly in the list). One question of the pair was written in such a way that the suspect’s guilt was presumed (e.g., “How did you find the key that was hidden behind the VCR?”) and the second question in the pair was written so as not to presume guilt (e.g., “Do you know anything about the key that was hidden...
behind the VCR?”). Student interrogators were asked to select six questions they might later want to ask. Thus, students could select from 0 to 6 questions that presumed guilt. Based on the behavioral confirmation theory, interrogators in the guilty-expectation condition should select more guilt-presumptive questions than interrogators in the innocent-expectation condition. Thus, the researchers predicted a main effect of the interrogator-expectation independent variable.

The data for this dependent variable, number of guilt-presumptive questions selected, are presented in Table 8.1. The overall mean number of guilt-presumptive questions for participants in the guilty-expectation condition (3.62) is obtained by averaging the means of the actual-guilt (3.54) and actual-innocence (3.70) conditions. Similarly, the overall mean for the innocent-expectation condition is computed to be 2.60: (2.54 + 2.66)/2 = 2.60. The means for a main effect represent the overall performance at each level of a particular independent variable collapsed across (averaged over) the levels of the other independent variable. In this case we collapsed (averaged) over the suspect status variable to obtain the means for the main effect of the interrogator expectation variable. The main effect of the interrogator-expectation variable indicates that the overall number of guilt-presumptive questions selected was greater when interrogators expected a guilty suspect (3.62) than when they expected an innocent suspect (2.60). Inferential statistics tests confirmed that the main effect of interrogator expectation was statistically significant. This supported the researchers’ hypothesis based on behavioral confirmation theory.

Table 8.1

<table>
<thead>
<tr>
<th>Suspect Status</th>
<th>Guilty</th>
<th>Innocent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual guilt</td>
<td>3.54</td>
<td>2.54</td>
</tr>
<tr>
<td>Actual innocence</td>
<td>3.70</td>
<td>2.66</td>
</tr>
<tr>
<td>Means for interrogator expectation</td>
<td>3.62</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Hypothetical cell means based on Kassin et al. (2003).

Dependent Variable #2: Number of Persuasive Techniques Let’s now turn to a dependent variable for which there was a statistically significant main effect of the suspect-status independent variable. The researchers also coded the tape-recorded interviews to analyze the techniques used by the interrogators to obtain a confession. Student interrogators were given brief, written instructions regarding the powerful techniques police use to break down a suspect’s

1The simple averaging of the values within each row and column to obtain the means for the main effects is possible only when there are equal numbers of participants contributing to each mean in the table. For procedures to calculate weighted means when the cells of the table involve different sample sizes, see Keppel (1991).
resistance. Researchers counted the number of interrogator statements that reflected these persuasive techniques, such as building rapport, assertions of the suspect’s guilt or disbelief in the suspect’s statements, appeals to the suspect’s self-interest or conscience, threats of punishment, promises of leniency, and presentation of false evidence.

The data for this dependent variable, number of persuasive techniques, are presented in Table 8.2. The overall mean number of persuasive techniques interrogators used when they interviewed suspects who were actually guilty was 7.15. This mean is computed by averaging across the two levels of the interrogator-expectation variable in the actual-guilt condition: \((7.71 + 6.59)/2\). The overall mean number of persuasive techniques used when interrogators interviewed a suspect who was actually innocent was 11.42, computed by averaging across the interrogator-expectation variable in the actual-innocence condition: \((11.96 + 10.88)/2\). On average, interrogators used 4.27 more persuasive techniques when the suspect was actually innocent compared to guilty \((11.42 - 7.15 = 4.27)\). Innocent suspects in both interrogator-expectation conditions were interrogated more aggressively than suspects who were actually guilty.

Table 8.2

A MAIN EFFECT OF SUSPECT STATUS ON THE NUMBER OF PERSUASIVE TECHNIQUES

<table>
<thead>
<tr>
<th>Interrogator Expectation</th>
<th>Suspect Status</th>
<th>Guilty</th>
<th>Innocent</th>
<th>Means for Suspect Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual guilt</td>
<td>7.71</td>
<td>6.59</td>
<td>7.15</td>
<td></td>
</tr>
<tr>
<td>Actual innocence</td>
<td>11.96</td>
<td>10.88</td>
<td>11.42</td>
<td></td>
</tr>
</tbody>
</table>

Hypothetical cell means based on Kassin et al. (2003).

Dependent Variable #3: Effort to Obtain a Confession

Finally, we can also examine data for which the researchers observed an interaction effect between the interrogator-expectation and suspect-status independent variables. In a second phase of the experiment a new sample of students listened to the tape-recorded interrogation and made judgments about the behavior of the interrogator and suspect. One question asked these students to rate on a 10-point scale how hard the interrogator worked to get a confession from the suspect, with higher numbers indicating greater effort. These data are presented in Table 8.3.

Table 8.3

AN INTERACTION EFFECT BETWEEN INTERROGATOR EXPECTATION AND SUSPECT STATUS ON EFFORT TO OBTAIN A CONFESSION

<table>
<thead>
<tr>
<th>Suspect Status</th>
<th>Interrogator Expectation</th>
<th>Guilty</th>
<th>Innocent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual guilt</td>
<td>5.64</td>
<td>5.56</td>
<td></td>
</tr>
<tr>
<td>Actual innocence</td>
<td>7.17</td>
<td>5.85</td>
<td></td>
</tr>
</tbody>
</table>

Cell means provided by Dr. Saul Kassin.
When two independent variables interact, we know that both variables together influence scores on the dependent variable, in this case, ratings of the interrogators’ effort to obtain a confession. Stated formally, an **interaction effect** occurs when the effect of one independent variable differs depending on the level of a second independent variable. To understand the interaction, examine the first row of Table 8.3. If only suspects who were actually guilty had been tested in the experiment, we would have concluded that the interrogators’ expectations had *no effect* on effort ratings because the means for the guilty-expectation and innocent-expectation conditions are nearly identical. On the other hand, if only suspects who were actually innocent had been tested (second row of Table 8.3), we would have decided that interrogator expectations had a *large effect* on interrogators’ efforts to obtain a confession.

An interaction effect is most easily seen when the means for the conditions are graphed. Figure 8.1 plots the four means found in Table 8.3. These results indicate that ratings of the interrogators’ effort depend on whether the suspect is actually innocent or guilty *and* whether the interrogator expects the suspect to be guilty or innocent—that is, *both* independent variables are necessary to explain the effect. We describe the statistical analysis of interaction effects in complex designs in a later section, “Analysis of Complex Designs.” For now, it is sufficient if you recognize that an interaction effect occurs when the effect of one independent variable differs depending on the levels of a second independent variable.

When one independent variable interacts with a second independent variable, the second independent variable must interact with the first one (that is, the order of the independent variables doesn’t matter). For example, we described the interaction in Table 8.3 by stating that the effect of interrogators’ expectations depends on the suspect’s status. The reverse is also true; the effect of suspect status depends on the interrogators’ expectations.

We are now in a position to describe the conclusions that Kassin et al. (2003) made based on all their data analyses. Using behavioral confirmation theory, they...
hypothesized that interrogators’ expectations of guilt would cause them to conduct an interrogation that would confirm their beliefs. Their results supported this hypothesis; overall, interrogators who suspected guilt conducted more aggressive interrogations. In turn, suspects in the guilty-expectation condition became more defensive and were perceived as guilty by the neutral observers. That the interrogators in the guilty-expectation condition were even more aggressive when trying to obtain a confession for suspects who were actually innocent demonstrates the power of their expectations of guilt and the power of the behavioral confirmation process. In the criminal justice context, police interrogations that are based on a preexisting bias of the suspect’s guilt can trigger a biased chain of events that may lead to tragic conclusions, including false confessions by innocent people.

Describing Interaction Effects

- Evidence for interaction effects can be identified using descriptive statistics presented in graphs (e.g., nonparallel lines) or tables (subtraction method).
- The presence of an interaction effect is confirmed using inferential statistics.

How you choose to describe the results of an interaction effect depends on which aspect of the interaction effect you want to emphasize. For example, Kassin et al. (2003) emphasized the effect of the interrogation-expectation variable on innocent and guilty suspects to test their predictions based on behavioral confirmation theory. That is, by manipulating interrogators’ expectations of a suspect’s guilt or innocence, they tested their predictions that interrogators would seek to confirm their expectations. By adding the second independent variable, actual guilt or innocence, the study more realistically conformed to real-world interrogations in which suspects are guilty or innocent. Second, the researchers demonstrated that interrogators who expect guilt work even harder to obtain a confession despite the suspect’s assertions of innocence. The study of interaction effects in complex designs allows researchers to achieve greater understanding than is possible by doing experiments with only one independent variable.

STRETCHING EXERCISE I

In this exercise you are asked to examine Tables 8.1, 8.2, and 8.3 to answer the following questions.

1. (a) In Table 8.1, what are the means for the main effect of the suspect-status independent variable?
 (b) How does the main effect of the suspect-status variable compare to the main effect of the interrogator-expectation variable for these data?
 (c) Is an interaction effect likely present in these data?

2. (a) In Table 8.2, what are the means for the main effect of the interrogator-expectation independent variable?
 (b) How does the main effect of the interrogator-expectation variable compare to the main effect of the suspect-status variable for these data?
 (c) Is an interaction effect likely present in these data?

3. (a) In Table 8.3, what are the means for the main effect of the interrogator-expectation independent variable?
 (b) What are the means for the main effect of the suspect-status independent variable?
 (c) Kassin et al. (2003) observed these main effects to be statistically significant. Using the means you computed, describe the main effects of the interrogator-expectation and suspect-status variables in Table 8.3.
In this exercise you will have the opportunity to practice identifying main effects and interaction effects in 2×2 complex designs using only descriptive statistics.

Your task is to identify main effects and interaction effects in each of six complex design experiments (A through F). In each table or graph in this box, determine whether the effect of each independent variable differs depending on the level of the other independent variable. In other words, is there an interaction effect? Next, check to see whether each independent variable produced an effect when collapsed across the other independent variable. That is, is there a main effect of one or both independent variables? The exercise will be most useful if you also practice translating the data presented in a table (Figure 8.2) into a graph and the data presented in graphs (Figures 8.3 and 8.4) into tables. The idea of this exercise is to become comfortable with the various ways of depicting the results of a complex design.

FIGURE 8.2 Mean number of correct responses as a function of task difficulty and anxiety level.

<table>
<thead>
<tr>
<th>Anxiety Level</th>
<th>Task Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Easy</td>
</tr>
<tr>
<td></td>
<td>Hard</td>
</tr>
<tr>
<td>High</td>
<td>Easy</td>
</tr>
<tr>
<td></td>
<td>Hard</td>
</tr>
</tbody>
</table>

FIGURE 8.3 Mean number of aggressive responses as a function of type of media and content.

FIGURE 8.4 Mean reaction time as a function of delay and pattern complexity.
There are three common ways to report a summary of the descriptive statistics in a complex design: tables, bar graphs, and line graphs. The procedures for preparing such tables and figures and the criteria for deciding which type of presentation to use are described in Chapter 13. In general, tables can be used for any complex design and are most useful when the exact values for each condition in the experiment need to be known. Bar graphs and line graphs, on the other hand, are especially useful for showing patterns of results without emphasizing the exact values. Line graphs are particularly useful for depicting the results of complex designs because an interaction effect can be seen so easily in a line graph. Nonparallel lines in the graph suggest an interaction effect; parallel lines suggest no interaction effect. See, for example, Figure 8.1.

When the results of a 2×2 design are summarized in a table, it is easiest to assess the presence or absence of an interaction effect by using the subtraction method. The subtraction method involves comparing the differences between the means in each row (or column) of the table. If the differences are different, an interaction effect is likely. In applying the subtraction method, it is essential that the differences be calculated in the same direction. For example, to use the subtraction method for the data reported in Table 8.3, you could subtract the mean ratings for the two levels of suspect status (actual guilt and actual innocence) for the guilty-expectation condition (5.64 - 7.17 = -1.53) and then do the same for the innocent-expectation condition (5.56 - 5.85 = -0.29). The sign of the obtained difference should also be carefully noted. The subtraction method shows you that these differences are different and, thus, an interaction effect between the two variables is likely. The subtraction method can be used only when one of the independent variables has two levels. For complex designs when both independent variables have three or more levels, graphs should be used to identify interaction effects.

Complex Designs with Three Independent Variables

The power and complexity of complex designs increase substantially when the number of independent variables in the experiment increases from two to three. In the two-factor design there can be only one interaction effect, but in the three-factor design each independent variable can interact with each of the other two independent variables and all three independent variables can interact together. Thus, the change from a two-factor to a three-factor design introduces the possibility of obtaining four different interaction effects. If the three independent variables are symbolized as A, B, and C, the three-factor design allows a test of the main effects of A, B, and C; two-way interaction effects of $A \times B$, $A \times C$, $B \times C$; and the three-way interaction effect of $A \times B \times C$. The efficiency of an experiment involving three independent variables is remarkable. An experiment investigating discrimination against overweight people in the workplace will give you a sense of just how powerful complex designs can be.

Participants in a $2 \times 2 \times 2$ complex design experiment viewed a videotape of a mock job interview (Pingitore, Dugoni, Tindale, & Spring, 1994). Thus, there were three independent variables, each with two levels, creating eight conditions in the experiment. After watching the job interview, participants rated
whether they would hire the applicant using a 7-point rating scale (1 = definitely not hire and 7 = definitely hire). This rating was the dependent variable.

First Independent Variable: Weight of the Job Applicant The researchers were interested in stigma associated with overweight people, so they manipulated the weight of the applicant in the videotape using two levels, normal and overweight. The role of the applicant was played by professional actors who were of normal weight. Their job interview (a script they followed) was videotaped with their normal appearance. For the overweight condition, the actors followed the script again, but in this videotape they wore makeup and rubber prostheses so they appeared 20% heavier. Note that the actors in the videotape and interview script are held constant. Participants were randomly assigned to watch the videotape of the normal-weight or the overweight applicant (random groups design).

Second Independent Variable: Sex of the Applicant The researchers also tested whether stigma against overweight people differs for males and females. Thus, participants were randomly assigned to view a videotape of a female applicant or a male applicant (random groups design). With factorial combination of these two independent variables, sex of the applicant and applicant weight, there are four random groups, representing four different videotaped job interviews in the experiment: female-normal, female-overweight, male-normal, and male-overweight. Participants were randomly assigned to watch one of the four interviews.

Third Independent Variable: Body Schema Participants completed self-report questionnaires that measured concern about their body and the importance of body image to their self-concept. Scores on these measures formed a body-schema variable. Using a natural groups design, participants were classified into two groups, low or high. High body-schema participants were characterized by greater concern about their body and its importance to their self-concept.

Understanding the Results of a Three-Factor Design The results of the Pingitore et al. experiment for these three variables are shown in Figure 8.5. Displaying the means for an experiment with three independent variables requires a graph with more than one “panel.” One panel of the figure shows the results for two variables at one level of the third variable, and the other panel shows results for the same two variables at the second level of the third independent variable.

As you are now familiar with main effects and simple (two-way) interaction effects, let us concentrate on understanding a three-factor or three-way interaction effect. Figure 8.5 shows a two-way interaction effect of the applicant’s weight and sex occurred only with participants who were high in concern about their own bodies. That is, those high on the body-schema variable (right panel of Figure 8.5) gave overweight female applicants especially low ratings but
rated normal-weight male and female applicants the same. Participants who were low on the body-schema variable (left panel of Figure 8.5), on the other hand, gave lower ratings to overweight applicants, but the difference between their ratings for male and female applicants was the same for both levels of the applicant weight variable.

One way to summarize the Pingitore et al. (1994) findings shown in Figure 8.5 is to say that the interaction effect of the independent variables of the applicants’ weight and the applicants’ sex depended upon the participants’ body schema. We call this type of finding a three-way (or triple) interaction effect. When a three-way interaction effect is present, all three independent variables must be taken into account when describing the results. In general, when there are two independent variables, an interaction effect occurs when the effect of one of the independent variables differs depending on the level of the second independent variable. **When there are three independent variables in a complex design, a three-way interaction effect occurs when the interaction of two of the independent variables differs depending on the level of the third independent variable.**

The results shown in Figure 8.5 illustrate this well. The pattern of results for the first two independent variables (applicants’ body weight and sex) differs depending on the level of the third variable (participants’ body schema). By including the third independent variable of body-schema, Pingitore et al. provided a much better understanding of discrimination based on an applicant’s weight than would have been the case had they included only the independent variables of sex and weight.

Analysis of Complex Designs

- In a complex design with two independent variables, inferential statistics are used to test three effects: the main effects for each independent variable and the interaction effect between the two independent variables.
Descriptive statistics are needed to interpret the results of inferential statistics.

How researchers interpret the results of a complex design differs depending on whether a statistically significant interaction effect is present or absent in the data.

The analysis of complex designs builds on the logic used in the analysis of experiments with only one independent variable (see Chapters 6, 11, and 12). After checking the data for errors or outliers, the next step in data analysis is to describe the results using descriptive statistics such as mean, standard deviation, and measures of effect size. Inferential statistics such as null hypothesis testing and confidence intervals are then used to determine whether any of the effects are statistically reliable. On the basis of the descriptive and inferential statistics, researchers are able to make claims about what they have found.

Your task in the remaining section of this chapter is to understand data analysis as it is applied to complex designs, especially the manner in which an investigator interprets interaction effects and main effects. It may be helpful for you first to read the introduction that follows in this section, “Analysis of Complex Designs” and then to review the discussion of this topic in Chapter 12. The emphasis in both of these chapters is on the rationale and logic of these analyses, rather than on the nitty-gritty of computation. Fortunately, computers spare us the need to do the extensive calculations required of data produced in complex designs. On the other hand, computers cannot interpret the outcome of these calculations. That is where you come in. Go slowly; study this material carefully and be sure to examine the tables and figures that accompany the description in the text.

We’ve described that a complex design involving two variables has three potential sources of systematic variation: two main effects and an interaction effect. Complex designs are analyzed using null hypothesis testing (the F-test in analysis of variance) and confidence intervals (see Chapter 12). A statistically significant effect in a complex design (as in any analysis) is an effect associated with a probability under the null hypothesis that is less than the accepted level of .05 (see Chapter 6). Inferential statistics tests are used in conjunction with descriptive statistics to determine whether an interaction effect has, in fact, occurred. After examining the data for an interaction effect, researchers may examine the data for the presence of main effects for each independent variable.

In a complex design, just as in an experiment with one independent variable, additional analyses may be needed to interpret the results. For example, a researcher might use confidence intervals to test differences between means. We illustrate such an approach in Chapter 12. The analysis plan for complex design experiments differs depending upon whether a statistically significant interaction effect is present in the experiment. Table 8.4 provides guidelines for interpreting a complex design experiment when an interaction effect does occur and when one does not. We will illustrate both paths in Table 8.4 by describing an experiment in which there is a statistically significant interaction effect present and then describing a study in which the interaction effect is not statistically significant.
CHAPTER 8: Complex Designs

Analysis Plan with an Interaction Effect

- If the analysis of a complex design reveals a statistically significant interaction effect, the source of the interaction effect is identified using simple main effects analyses and comparisons of two means.
- A simple main effect is the effect of one independent variable at one level of a second independent variable.

In order to understand the analysis of interaction effects within a complex design, we will examine a contemporary approach to understanding the effect of prejudice on individuals who are stigmatized. Social psychologists suggest that one effect of prejudice is that people who belong to stigmatized groups (e.g., ethnic minorities, gays and lesbians, obese individuals) develop belief systems about being devalued in society. With this “social-identity threat,” stigmatized individuals develop expectations that cause them to be especially alert to cues in their environment that indicate they are viewed negatively (Kaiser, Vick, & Major, 2006). This attention to cues can occur at a conscious level, in which individuals are aware of their special attention to stigma cues. More recently, however, researchers have tested the extent to which social-identity threat causes people to be vigilant for potentially stigmatizing information without conscious awareness.

One method for examining nonconscious attention is the “emotional Stroop task.” You may be familiar with the original version of the Stroop task in which participants are asked to name the color in which words are printed. The Stroop task was designed to show that reading is automatic (at least for adults). People find it impossible to ignore the printed words while naming the colors. This automatic-processing effect is demonstrated most dramatically in the condition in which color words are printed in a color other than the written word (e.g., “red” printed in blue ink). It takes participants longer to name colors in this “mismatch” condition because reading the word interferes with naming the color. Further studies show that this effect occurs even when the words are presented too quickly (e.g., 15 ms [milliseconds]) for participants to be consciously aware that a word was presented!

In the emotional Stroop task, the color words are replaced with content words that are particularly relevant to participants’ concerns. For example, an experiment

TABLE 8.4 GUIDELINES FOR THE ANALYSIS OF A TWO-FACTOR EXPERIMENT

<table>
<thead>
<tr>
<th>Is the $A \times B$ interaction effect significant?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the main effects of A and B significant?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the simple main effects significant?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compare two means</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sha25365_ch08_243-274.indd 257sha25365_ch08_243-274.indd 257 08/01/14 4:26 PM08/01/14 4:26 PM
that examines nonconscious attention in people with phobias may use words such as “snake” and “spider.” For phobic participants, identifying the color of these words takes longer than identifying words with neutral content, even when the words are presented subliminally (outside of conscious awareness).

Kaiser and her colleagues (2006) used the emotional Stroop task to investigate whether women with an expectation of being stigmatized through sexism would demonstrate greater nonconscious attention to sexist words compared to nonsexist words. They tested 35 women in a 2×3 complex design. Thus, there were two independent variables, one with two conditions and the second with three conditions. The dependent variable was response time; that is, how long it took participants to identify the color of words in the emotional Stroop task.

First Independent Variable: Social Identity To determine whether the threat of sexism affects nonconscious attention, the researchers manipulated social identity with two levels, threat and safety, in a random groups design. Participants were told that after completing a computer task they would work on a group project with a male partner (actually fictitious). The experimenter provided information about the personal characteristics of the partner. In the threat condition, the male partner held sexist views (e.g., strongly agreeing with statements such as “I could not work for a female boss because women can be overly emotional”). In the safety condition, the male partner was presented as nonsexist and strongly disagreed with sexist statements.

Second Independent Variable: Word Type The second independent variable in the 2×3 design was word type, with three levels: social-identity threatening, illness threatening, and nonthreatening. This variable was manipulated using a repeated measures design; thus, all participants were tested with all three word types in a completely counterbalanced order. The social-identity threatening words were sexist in content (e.g., ho, hooters). The illness-threatening words (e.g., cancer, mono) were included as a control condition to test whether women in the threat condition would pay attention to threatening words in general, and not just social-identity threatening words. The nonthreatening words, also a control condition, described common household objects (e.g., broom, curtains). The words were presented subliminally (15 ms) in different colors (red, yellow, blue, green), and participants’ task was to name the color. Tests showed that participants were unaware that words were presented.

Understanding a 2×3 Interaction Effect As Kaiser and her colleagues predicted, an interaction effect occurred between the two independent variables. Women in the threat condition (first row of Table 8.5) took longest to name colors when social-identity threatening words were presented compared to illness-threatening and nonthreatening words. Longer response times to name the colors indicate that the women paid more subliminal attention to the words. Thus, women who expected to interact with a sexist partner paid more subliminal attention to words that threatened their social identity. In contrast, women who anticipated
interacting with a nonsexist man in the safety condition (second row of Table 8.5) did not differ substantially in the attention given to the three different types of words. An interaction effect is present because the effect of the word-type variable differed depending on the level of the social-identity variable (threat, safety). Inferential statistics tests of these results using null hypothesis significance testing confirmed that the interaction effect was statistically significant.

Once an interaction effect is confirmed in the data, the specific source of the interaction is located using additional statistical tests. As outlined in Table 8.4, the specific tests for tracing the source of a significant interaction are called simple main effects and comparisons of two means (see Chapter 12).

A simple main effect is the effect of one independent variable at one level of a second independent variable. We can illustrate the use of simple main effects by returning to the results of the social-identity experiment. There are five simple main effects in Table 8.5: the effect of word type at each of the two levels of social identity and the effect of social identity at each of the three levels of word type. The researchers predicted that the subliminal attention effect (the difference between means for the three different word types) would occur for women in the threat condition but not for women in the safety condition. Therefore, they chose to test the simple main effects of word type at each level of the social-identity independent variable. They found, as predicted, that the simple main effect of word type was statistically significant in the threat condition (a difference among the three means, 598.9, 577.7, and 583.9). However, the simple main effect of word type was not statistically significant in the safety condition (no difference among the three means, 603.0, 615.0, and 614.5).

When three or more means are tested in a simple main effect, as occurs for the word-type independent variable in Kaiser et al.’s experiment, comparisons of means tested two at a time can be done to identify the source of the simple main effect (see Chapter 12). First, no additional analyses are needed for the safety condition because the simple main effect of word type was not statistically significant. The next step is to analyze the means more carefully for the threat condition, where the simple main effect was statistically significant.

In their analyses of means considered two at a time, Kaiser and her colleagues noted both an expected and an unexpected effect for women in the threat condition. As expected, mean response times were longer for social-identity threatening words than for illness-threatening words. Unexpectedly, mean response times did not differ when nonthreatening words were compared

Key Concept

Table 8.5

<table>
<thead>
<tr>
<th>Social Identity Condition</th>
<th>Social-Identity Threatening</th>
<th>Illness Threatening</th>
<th>Non-Threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat</td>
<td>598.9</td>
<td>577.7</td>
<td>583.9</td>
</tr>
<tr>
<td>Safety</td>
<td>603.0</td>
<td>615.0</td>
<td>614.5</td>
</tr>
</tbody>
</table>

Data adapted from Kaiser et al. (2006).
PART III: Experimental Methods

to either social-identity threatening words or to illness-threatening words. This raises an important question: Why did women allocate similar subliminal attention to nonthreatening words as they did to social-identity threatening words? Kaiser et al. reasoned that when women were expecting to interact with a sexist man, words describing household objects (e.g., stove, broom, microwave) in the nonthreatening condition may have been nonconsciously associated with sex-typed domestic tasks such as cooking and cleaning. According to Kaiser et al. (2006), “In retrospect, these nonthreatening words may not have provided the best comparison” (p. 336). Their interpretation of this unexpected finding illustrates how interpreting an experiment depends critically on how the experiment is done and how the data are analyzed.

Once an interaction effect has been thoroughly analyzed, researchers can also examine the main effects of each independent variable. However, the main effects are of much less interest when we know that an interaction effect occurred. For instance, the interaction effect in this experiment tells us that the subliminal attention given to different word types differs depending on the level of social-identity threat. Once we know this, we would not add much by learning whether, overall, women in the safety condition had longer response times across all word types compared to women in the threat condition. In the Kaiser et al. study, the main effects of the word-type and social-identity independent variables were not statistically significant. Nonetheless, there are experiments in which the interaction effect and the main effects are all of interest.

Analysis Plan with No Interaction Effect

• If the analysis of a complex design indicates the interaction effect between independent variables is not statistically significant, the next step in the analysis plan is to determine whether the main effects of the variables are statistically significant.

• The source of a statistically significant main effect can be specified more precisely by performing comparisons of two means or using confidence intervals to compare means two at a time.

We can use the results from a different part of the social-identity experiment conducted by Kaiser et al. (2006) to examine the analysis of a complex design when an interaction effect is not statistically significant. The results we just described were for words presented subliminally, that is, at a speed too fast (15 ms) for participants to detect the presence of the words. However, participants in this experiment also were tested with words presented at a conscious level. In the conscious-attention condition, women looked at the words on the screen until they responded by naming the color of the word.²

²The astute reader may see that the Kaiser et al. (2006) study is a 2 (social identity) × 3 (word type) × 2 (word presentation: subliminal, conscious) complex (mixed) design. The two levels of word presentation were manipulated using a repeated measures design. The 2 × 3 × 2 interaction among these independent variables was statistically significant. To further analyze the source of this three-way interaction, Kaiser et al. (2006) analyzed the 2 (social identity) × 3 (word type) interaction separately for subliminal presentation and conscious presentation. As described here, the 2 × 3 interaction was statistically significant for subliminal presentation but not for conscious presentation.
The mean response times for the three word types (social-identity threatening, illness threatening, and nonthreatening) for the two different groups of women (threat, safety) are presented in Figure 8.6. The interaction effect, or, more accurately, the lack of an interaction effect, can be seen in the figure. Although the two lines in the figure are not perfectly parallel, the mean response times appear to decrease in both groups at approximately the same rate. Inferential statistics tests confirmed that the interaction effect was not statistically significant. The data shown in Figure 8.6 illustrate a general principle of data analysis: The pattern of findings as shown by the descriptive statistics is not sufficient to decide whether an interaction effect is present in an experiment. Inferential statistics tests, such as the F-test, must be done to confirm whether the effects are statistically reliable.

When the interaction effect is not statistically significant, the next step is to examine the main effects of each independent variable (see Table 8.4). The means for the Kaiser et al. conscious-awareness experiment are presented again in Table 8.6 to make it easier to determine the main effects. By collapsing

<table>
<thead>
<tr>
<th>Social Identity Condition</th>
<th>Social-Identity Threatening</th>
<th>Illness Threatening</th>
<th>Non-Threatening</th>
<th>Means for Social Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat (n = 18)</td>
<td>625.9</td>
<td>607.4</td>
<td>607.5</td>
<td>613.6</td>
</tr>
<tr>
<td>Safety (n = 16)</td>
<td>650.6</td>
<td>629.0</td>
<td>614.5</td>
<td>631.4</td>
</tr>
<tr>
<td>Means for word type</td>
<td>637.5*</td>
<td>617.6*</td>
<td>610.8*</td>
<td></td>
</tr>
</tbody>
</table>

*Weighted means were calculated due to unequal sample sizes for the social-identity conditions.

Data provided by Dr. Cheryl R. Kaiser.
(averaging) across the two social-identity conditions, we obtain the mean response times for each word type (i.e., for the main effect of the word-type variable). These means are 637.5 for the social-identity threatening words, 617.6 for the illness-threatening words, and 610.8 for the nontargeting words. The main effect of word type was statistically significant. The source of a statistically significant main effect involving three or more means can be specified more precisely by comparing means two at a time (see Chapter 12). These comparisons can be done using t-tests or confidence intervals. Kaiser et al. found that, overall, women consciously attended more (i.e., had longer response times) to the social-identity threatening cues ($M = 637.5$) than to both the illness-threatening cues ($M = 617.6$) and the nontargeting cues ($M = 610.8$). There was no difference, however, between the latter two conditions. These results indicate that when consciously aware of the word types, women paid greater attention to words indicating a threat to their social identity.

We can also test for the main effect of the social-identity variable by using the means in Table 8.6. By collapsing across the word-type variable, we obtain the means for the threat condition (613.6) and the safety condition (631.4). The main effect of the social-identity variable was not statistically significant, indicating that, on average, response times were similar for women in the threat and safety conditions. That the two means appear to be different reinforces the need for statistical analyses to determine whether mean differences are reliable. Whether an effect is statistically significant depends on the difference between the means, the sample size, and the error variation within groups.

The analysis of Kaiser et al.’s social-identity experiment illustrates that much can be learned from a complex design even when there is no statistically significant interaction effect.

INTERPRETING INTERACTION EFFECTS

Interaction Effects and Theory Testing

- Theories frequently predict that two or more independent variables interact to influence behavior; therefore, complex designs are needed to test theories.
- Tests of theories can sometimes produce contradictory findings. Interaction effects can be useful in resolving these contradictions.

Theories play a critical role in the scientific method. Complex designs greatly enhance researchers’ ability to test theories because they can test for both main effects and interaction effects. For example, Kaiser et al. (2006) tested hypotheses about attention to prejudice cues in the environment based on social-identity theory. Prior research had demonstrated that when individuals’ social identity is threatened, they are consciously aware of cues in their environment relating to potential prejudice. Kaiser et al. extended this research by testing the hypothesis that threatened individuals pay attention to prejudice cues nonconsciously, without awareness. Because they used a complex design, Kaiser et al.’s data provide evidence that women expecting to experience sexism, compared to women expecting a “safe” situation, paid greater subliminal attention to sexist words than
to other words. Their data supported the social-identity theory of prejudice, in which "members of stigmatized groups develop belief systems about being devalued and that these expectations cause them to become especially alert or vigilant for signs of devaluation" (Kaiser et al., 2006, p. 332).

In addition, Kaiser et al. noted that theories of attentional processes state that attention is a limited resource. People who experience prejudice may allocate attention toward cues that threaten their social identity and therefore have less attentional resources available for other tasks. For example, students in a classroom setting who perceive possible prejudice may allocate their attention, both consciously and nonconsciously, to potential threats to their social identity, and this diverted attention could impair their classroom performance. Importantly, however, because Kaiser et al. manipulated the independent variable of social-identity threat with two levels, threat and safety, they were able to demonstrate that attentional resources are not diverted to potential threats when individuals believe they are safe from social-identity threats. This finding reinforces the importance of creating environments that are as free of prejudice as possible.

Psychological theories involving topics such as social identity and prejudice are often complex. In order to explain prejudice, for example, psychologists need to describe behavioral, cognitive, and emotional processes at individual, group, and societal levels. As you might imagine, experimental tests of complex theories can lead to contradictory findings. For example, consider a hypothetical example in which a study of prejudice shows that members of a devalued group do not experience heightened nonconsciously attention to social-identity threats. How would this seemingly contradictory finding be incorporated into a theory of prejudice which states that stigmatized individuals attend to potential threats to their identity? As data from the Kaiser et al. experiment suggest, one interpretation of this finding might involve the independent variable of social-identity condition, threat or safety. The contradictory finding could be interpreted by suggesting that participants in the hypothetical study of prejudice felt safe from social-identity threats and therefore did not allocate attention to potential sources of devaluation.

A common approach to resolving contradictory findings is to include in the research design independent variables that address potential sources of contradictory findings (for example, by including threat and safety conditions in the design). More generally, complex designs can be extremely useful in tracking down the reasons for seemingly contradictory findings when theories are tested. The process can be a painstaking one, but it can also be very worthwhile.

Interaction Effects and External Validity

- When no interaction effect occurs in a complex design, the effects of each independent variable can be generalized across the levels of the other independent variable; thus, external validity of the independent variables increases.
- The presence of an interaction effect identifies boundaries for the external validity of a finding by specifying the conditions in which an effect of an independent variable occurs.
In Chapter 6 we discussed the procedures for establishing the external validity of a research finding when an experiment involves only one independent variable. We described how partial replications could be done to establish external validity—that is, the extent to which research findings may be generalized. We also discussed how field experiments allow researchers to examine independent variables in real-world settings. The presence or absence of an interaction effect in a complex design is critical for determining the external validity of the finding.

When no interaction effect occurs in a complex design, we know that the effects of each independent variable can be generalized across the levels of the other independent variable. For instance, consider again the findings from Kassin et al.’s (2003) study on interrogators’ expectations when questioning a suspect. They found that when interrogators expected the suspect to be guilty, they selected more guilt-presumptive questions than when interrogators expected the suspect to be innocent, regardless of whether the suspect was actually guilty or innocent. That is, there was no interaction effect between the interrogator-expectation variable and the suspect-status variable. Thus, interrogators’ selection of guilt-presumptive questions when they expect guilt can be generalized across situations in which the suspect is actually guilty or innocent.

Of course, we cannot generalize our findings beyond the boundaries or conditions that were included in the experiment. For example, the absence of an interaction effect between interrogator expectations and suspect status does not allow us to conclude that the selection of guilt-presumptive questions would be similar if other groups were tested, such as law enforcement officials. Similarly, we do not know whether the same effects would occur if other manipulations of interrogators’ expectations were used. We also must remember that not finding a statistically significant interaction effect does not necessarily mean that an interaction effect is not really present; we may not have performed an experiment with sufficient sensitivity to detect it.

Although the absence of an interaction effect increases the external validity of the effects of each independent variable, the presence of an interaction effect identifies boundaries for the external validity of a finding. For example, Kassin et al. (2003) also found that interrogators who expected the suspect to be guilty, rather than innocent, applied greater pressure to obtain a confession on suspects who were actually innocent compared to those who were guilty. This interaction effect clearly sets limits on the external validity of the effect of interrogators’ expectations on pressure to obtain a confession. Given this finding, the best way to respond to someone’s query regarding the general effect of interrogators’ expectations on their effort to obtain a confession is to say, “It depends.” In this case, it depends on whether the suspect is actually guilty or innocent. The presence of the interaction effect sets boundaries for the external validity, but the interaction effect also specifies what those boundaries are.

The possibility of interaction effects among independent variables should lead us to be cautious about saying that an independent variable does not have an effect on behavior. Independent variables that influence behavior are called
relevant independent variables. In general, a relevant independent variable is one that influences behavior directly (results in a main effect) or produces an interaction effect when studied in combination with a second independent variable. Distinguishing between factors that affect behavior and those that do not is essential for developing adequate theories to explain behavior and for designing effective interventions to deal with problems in applied settings such as schools, hospitals, and factories (see Chapters 9 and 10).

There are several reasons why we should be cautious about identifying an independent variable as irrelevant. First, if an independent variable is shown to have no effect in an experiment, we cannot assume that this variable wouldn’t have an effect if different levels of the independent variable had been tested. Second, if an independent variable has no effect in a single-factor experiment, this doesn’t mean that it won’t interact with another independent variable when used in a complex design. Third, if an independent variable does not have an effect in an experiment, it may be that an effect could have been seen with different dependent variables. Fourth, the absence of a statistically significant effect may or may not mean that the effect is not present. Minimally, we would want to consider the sensitivity of our experiment and the power of our statistical analysis before deciding that we have identified an irrelevant variable. (See Chapter 12 for a discussion of the power of a statistical analysis.) For now, it is best if you avoid being dogmatic about identifying any independent variable as not having any effect.

Interaction Effects and Ceiling and Floor Effects

- When participants’ performance reaches a maximum (ceiling) or a minimum (floor) in one or more conditions of an experiment, results for an interaction effect are uninterpretable.

Consider the results of a 3×2 experiment investigating the effects of increasing amounts of practice on performance during a physical-fitness test. There were six groups of participants in this plausible but hypothetical experiment. Participants were first given 10, 30, or 60 minutes to practice, doing either easy or hard exercises. Then they took a fitness test using easy or hard exercises (the same they had practiced). The dependent variable was the percentage of exercises that each participant was able to complete in a 15-minute test period. Results of the experiment are presented in Figure 8.7.

The pattern of results in Figure 8.7 looks like a classic interaction effect; the effect of amount of practice time differed for the easy and hard exercises. Increasing practice time improved test performance for the hard exercises, but performance leveled off after 30 minutes of practice with the easy exercises. If a standard analysis was applied to these data, the interaction effect would very likely be statistically significant. Unfortunately, this interaction effect would be essentially uninterpretable. For those groups given practice with the easy exercises, performance reached the maximum level after 30 minutes of practice, so no improvement beyond this point could be shown in the 60-minute group. Even if the participants given 60 minutes of practice had further benefited from the extra practice, the experimenter could not measure this improvement on the chosen dependent variable.
The preceding experiment illustrates the general measurement problem referred to as a ceiling effect. Whenever performance reaches a maximum in any condition of an experiment, there is danger of a ceiling effect. The corresponding name given to this problem when performance reaches a minimum (e.g., zero errors on a test) is a floor effect. Researchers can avoid ceiling and floor effects by selecting dependent variables that allow ample “room” for performance differences to be measured across conditions. For example, in the fitness experiment it would have been better to test participants with a greater number of exercises than anyone could be expected to complete in the time allotted for the test. The mean number of exercises completed in each condition could then be used to assess the effects of the two independent variables without the danger of a ceiling effect. It is important to note that ceiling effects also can pose a problem in experiments that don’t involve a complex design. If the fitness experiment had included only the easy exercises, there would still be a ceiling effect in the experiment.

Interaction Effects and the Natural Groups Design

- Researchers use complex designs to make causal inferences about natural groups variables when they test a theory for why natural groups differ.
- Three steps for making a causal inference involving a natural groups variable are to state a theory for why group differences exist, manipulate an independent variable that should demonstrate the theorized process, and test whether an interaction effect occurs between the manipulated independent variable and natural groups variable.
The natural groups design, described briefly in Chapter 6, is one of the most popular research designs in psychology. Groups of people are formed by selecting individuals who differ on some characteristic such as gender, age, introversion–extraversion, or aggressiveness, to name just a few individual differences variables. Researchers then look for systematic relationships between these individual differences variables and other aspects of behavior. The natural groups design is effective for establishing correlations between individuals’ characteristics and their performance. As we also described in Chapter 6, however, the natural groups design is perhaps the most challenging design when it comes to drawing conclusions about the causes of behavior.

The difficulty in interpreting the natural groups design arises when we try to conclude that differences in performance are caused by the characteristics of the people we used to define the groups. For instance, consider an experiment in which participants are selected because of their musical training. One group of participants includes people with 10 or more years of formal musical training, and one group includes people with no formal training. Both groups are tested on their ability to remember the musical notation for simple 10-note melodies. Not surprisingly, the results of these tests show that those with musical training perform far better than those without such training.

We can conclude on the basis of these results that memory for simple melodies varies with (is correlated with) amount of musical training. But we cannot conclude that musical training causes superior memory performance. Why not? There are probably many additional ways in which people with 10 years of musical training differ from those without such training. The groups may differ in amount and type of general education, family background, socioeconomic status, and amount and type of experience they have had listening to music. Also, those with musical training may have generally better memories than those without such training, and their superior memory for simple melodies may reflect this general memory ability. Finally, those who sought out musical training may have done so because they had a special aptitude for music. Accordingly, they might have done better on the memory task even if they had not had any musical training. In short, there are many possible causes other than individual differences in musical training for the difference in memory performance that was observed.

There is a potential solution to the problem of drawing causal inferences based on the natural groups design (Underwood & Shaughnessy, 1975). The key to this solution is to develop a theory regarding the critical individual difference variable. For example, Halpern and Bower (1982) were interested in how memory for musical notation differs between musicians and nonmusicians. They developed a theory of how musical training would influence the cognitive processing of musical notation based on a memory concept called “chunking.” You can get some sense of the memory advantage provided by chunking if you try to memorize the following strings of 15 letters: HBOFBICNNUSAWWW. Chunking helps memory by changing the same string of letters to a series of five more easily remembered chunks: HBO-FBI-CNN-USA-WWW.
Halpern and Bower theorized that musical training led musicians to “chunk” musical notation into meaningful musical units, thereby reducing the amount of information they needed to remember. Furthermore, if chunking were responsible for the difference between the memory performance of musicians and nonmusicians, then the difference between these two groups should be greater for melodies with good musical structure than for melodies with poor musical structure. To test their theory, the researchers manipulated the independent variable of musical structure with three levels. They prepared sets of simple melodies whose notations had similar visual structures but that were good, bad, or random in musical structure.

The critical test in Halpern and Bower’s experiment was whether they would obtain an interaction effect between the two independent variables: musical training and type of melodies. Specifically, they expected that the difference in memory performance between musicians and nonmusicians would be largest for the melodies exhibiting good structure, next largest for the melodies exhibiting bad structure, and smallest for the random melodies. The results of their experiment conformed exactly to their predictions.

The obtained interaction effect allowed Halpern and Bower to rule out many alternative hypotheses for the difference in memory performance between musicians and nonmusicians. Such characteristics as amount and type of general education, socioeconomic status, family background, and good memory ability are not likely to explain why there is a systematic relationship between the structure of the melodies and the difference in memory performance between musicians and nonmusicians. These potential alternative hypotheses cannot explain why the two groups’ memory performance for random melodies did not differ. The interaction effect makes such simple correlational explanations much less plausible.

There are several steps that the investigator must take in carrying out the general procedure for drawing causal inferences based on the natural groups design.

Step 1: Develop a Theory The first step is to develop a theory explaining why a difference should occur in the performance of groups that have been differentiated on the basis of an individual differences variable. For example, Halpern and Bower theorized that musicians and nonmusicians differed in musical performance because of the way that these groups cognitively organize (“chunk”) melodies.

Step 2: Identify a Relevant Variable to Manipulate The second step is to select an independent variable that can be manipulated and that is presumed to influence the likelihood that this theoretical process will occur. Halpern and Bower suggested that type of musical structure was a variable associated with ease of chunking.

Step 3: Test for an Interaction The most critical aspect of the recommended approach is to strive to produce an interaction effect between the manipulated variable and the individual differences variable. Thus, the relevant manipulated
independent variable is tested with both natural groups. Halpern and Bower sought an interaction effect between the individual differences variable (musician vs. nonmusician) and the manipulated variable (type of musical structure) in a 2×3 complex design. The approach can be strengthened even further by testing predictions of interaction effects of three independent variables: two manipulated independent variables and the individual differences variable (see, for example, Anderson & Revelle, 1982).

Summary

A complex design is one in which two or more independent variables are studied in the same experiment. A complex design involving two independent variables allows researchers to determine the overall effect of each independent variable (the main effect of each variable). More important, complex designs can be used to reveal the interaction effect between independent variables. Interaction effects occur when the effect of each independent variable depends on the level of the other independent variable.

The simplest possible complex design is the 2×2 design, in which two independent variables are both studied at two levels. The number of conditions in a factorial design is equal to the product of the levels of the independent variables (e.g., $2 \times 3 = 6$). Complex designs beyond the 2×2 can be even more useful for understanding behavior. Additional levels of one or both of the independent variables can be added to yield designs such as the 3×2, the 3×3, the 4×2, the 4×3, and so on. Additional independent variables can also be included to yield designs such as the $2 \times 2 \times 2$, the $2 \times 3 \times 3$, and so on. Experiments involving three independent variables are remarkably efficient. They allow researchers to determine the main effects of each of the three variables, the three two-way interaction effects, and the simultaneous interaction effect of all three variables.

When two independent variables are studied in a complex design, three potential sources of systematic variation can be interpreted. Each independent variable can produce a statistically significant main effect, and the two independent variables can combine to produce a statistically significant interaction effect. Interaction effects can be initially identified by using the subtraction method when the descriptive statistics are reported in a table, or by the presence of nonparallel lines when the results appear in a line graph. If the interaction effect does prove to be statistically significant, we can analyze the results further by examining simple main effects and, if necessary, comparisons of means considered two at a time. When no interaction effect arises, we examine the main effects of each independent variable, and we can use comparisons of two means or confidence intervals when necessary.

Complex designs play a critical role in the testing of predictions derived from psychological theories. Complex designs are also essential to resolve contradictions that arise when theories are tested. When a complex design is used and no interaction effect occurs, we know that the effects of each independent variable can be generalized across the levels of the other independent variable(s). When an interaction effect does occur, however, boundaries on the external validity of
a finding can be clearly specified. The possibility of interaction effects requires that we expand the definition of a relevant independent variable to include those that influence behavior directly (produce main effects) and those that produce an interaction effect when studied in combination with another independent variable. Interaction effects that may arise because of measurement problems such as ceiling or floor effects must not be confused with interaction effects that reflect the true combined effect of two independent variables. Interaction effects can also be most helpful in solving the problem of drawing causal inferences based on the natural groups design.

Key Concepts

- complex designs 244
- main effect 247
- interaction effect 250
- simple main effect 259
- relevant independent variable 265
- ceiling and floor effects 266

Review Questions

1. Identify the number of independent variables, the number of levels for each independent variable, and the total number of conditions for each of the following examples of complex design experiments: (a) 2×3 (b) 3×3 (c) $2 \times 2 \times 3$ (d) 4×3.

2. Identify the conditions in a complex design when the following independent variables are factorially combined: (1) type of task with three levels (visual, auditory, tactile) and (2) group of children tested with two levels (developmentally delayed and no delay).

3. Use the Kassin et al. results in Table 8.3 for interrogators’ efforts to obtain a confession to show there are two possible ways to describe the interaction effect.

4. Describe how you would use the subtraction method to decide whether an interaction effect was present in a table showing the results of a 2×2 complex design.

5. Describe the pattern in a line graph that indicates the presence of an interaction effect in a complex design.

6. Outline the steps in the analysis plan for a complex design with two independent variables when there is an interaction effect and when there is not an interaction effect.

7. Use an example to illustrate how a complex design can be used to test predictions derived from a psychological theory.

8. How is the external validity of the findings in a complex design influenced by the presence or absence of an interaction effect?

9. Explain why researchers should be cautious about saying that an independent variable does not have an effect on behavior.

10. Describe the pattern of descriptive statistics that would indicate a ceiling (or floor) effect may be present in a data set, and describe how this pattern of data may affect the interpretation of inferential statistics (e.g., F-test) for these data.

11. Explain how interaction effects in a complex design can be used as part of the solution to the problem of drawing causal inferences on the basis of the natural groups design.
1. Consider an experiment in which two independent variables have been manipulated. Variable A has been manipulated at three levels, and Variable B has been manipulated at two levels.

A. Draw a graph showing a main effect of Variable B, no main effect of Variable A, and no interaction effect between the two variables.

B. Draw a graph showing no main effect of Variable A, no main effect of Variable B, but an interaction effect between the two variables.

C. Draw a graph showing a main effect of Variable A, a main effect of Variable B, and no interaction effect between the A and B variables.

2. To examine factors that cause suspects to waive their rights after they hear the Miranda warning, researchers created a situation in which students were falsely accused of cheating in an experiment, and then asked if they wanted to waive their right to have an advocate present when meeting with a professor (see Scherr & Madon, 2013). A common police tactic is to trivialize Miranda rights (i.e., say the rights are not important) to get accused individuals to waive their rights. Therefore, the researchers manipulated waiver description with two levels. Students were told their decision about waiving their rights was either trivial or important to the outcome of their situation. The researchers also hypothesized that stress affects suspects’ understanding of their rights. To manipulate stress, students were told their cheating was either a serious or a minor violation. Twenty students were randomly assigned to each condition of the experiment. The researchers measured students’ comprehension of their rights to have an advocate present.

A. Describe the design of this study, including the independent variables and the conditions of the experiment when factorial combination is used.

B. Comprehension was measured by asking participants to explain the meaning of five statements such as, “Anything you say can and will be used against you.” Explanations were coded, with possible comprehension scores between 0 (poor) and 10 (good). Means for this measure are presented below. Describe any effects of the independent variables (assume mean differences greater than zero are significant).

<table>
<thead>
<tr>
<th>Stress</th>
<th>Waiver Description</th>
<th>Serious</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td></td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Important</td>
<td></td>
<td>7.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

3. To test whether participants in an experiment would help another person, a researcher developed a computer game that involved maneuvering a robot character at the bottom of the screen to catch balls that flew randomly from all angles of the screen. The screen was split down the middle. Participants were told one side of the screen represented their own game, and the second side represented the game of another person playing in an adjacent room (fictitious). Participants could tap the spacebar on the keyboard to move between their own game and the other player’s game, but their robot wouldn’t be seen by the other player. Any balls they caught for the other player would simply disappear from the screen (like other balls in the game). Midway through the playing time, the other player’s robot appeared stuck on the far side of the screen. The dependent variable was how many balls the participant caught for the other player as a measure of helping.

The researcher hypothesized that people are less likely to help when their attention is focused on themselves. She reasoned that a fast game speed would require participants to focus on their own game, so she manipulated participants’ game speed using two levels, fast and slow. The researcher also predicted that participants would be less likely to help when given incentives to score high in their own game (earn money for over 100 balls caught). She tested three levels of incentive: zero incentive, $5, and $10. Twenty participants were tested in each condition of this complex design. The average number of balls caught for the other player in each condition are presented below:

<table>
<thead>
<tr>
<th>Incentive</th>
<th>Game Speed</th>
<th>Zero</th>
<th>$5</th>
<th>$10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td></td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Fast</td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

A. Is there evidence for a possible interaction effect in this experiment?

B. What aspect of the results leads you to be cautious when interpreting an interaction effect, if one were present in this experiment?

C. How could the researcher modify her experiment to be able to test for an interaction effect?

(continued)
A psychologist hypothesized that older people take longer to process complex visual patterns. He tested 20 older (ages 65–70) and 20 younger (ages 18–23) individuals using an embedded figures test. In his procedure, a simple figure was displayed on a tablet screen, followed immediately by a complex figure that contained the simple figure. Participants’ task was to locate the simple figure as quickly as possible in each of 10 trials. When they found the figure, they tapped its location on the tablet. Results indicated that average response times for finding the simple figure were longer for the older group than the younger group. The difference was statistically significant.

A
The psychologist concluded that the difference in response times was caused by diminished ability among older adults to process complex information. What information in this summary allows the psychologist to make this causal inference? What information is lacking?

B
Another researcher hypothesized that older individuals prefer accuracy over speed (i.e., they make sure they’re correct before responding), relative to younger adults. He added another independent variable, reward, with two levels. Participants in the accurate condition were rewarded for accurate judgments, and participants in the speed condition were rewarded for fast response times. Describe the design of this experiment, including the conditions.

C
The dependent variable was the average response time (in seconds) for correct identifications. What effects are present in the following data? (Assume equal cell sizes and nonzero differences are statistically significant.) What do the results indicate about the second researcher’s theory?

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Accuracy</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>16.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Old</td>
<td>24.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Answer to Stretching Exercise I

1. (a) Actual guilt: $M = 3.04$, Actual innocence: $M = 3.18$
 (b) The difference between the means for the suspect-status independent variable is 0.14, which is a very small difference compared to the mean difference observed for the statistically significant effect of interrogator expectation on the number of presumptive questions ($3.62 - 2.60 = 1.02$).
 (c) Using the subtraction method, the difference between the actual-guilt and actual-innocent conditions in the guilty-expectation condition is -0.16 ($3.54 - 3.70$). In the innocent-expectation condition, this difference is -0.12 ($2.54 - 2.66$). Because these differences are very similar, an interaction effect is unlikely.

2. (a) Expect guilty: $M = 9.84$, Expect innocent: $M = 8.74$
 (b) The difference between the means for the expect-guilty and expect-innocent conditions is 1.1 (i.e., approximately 1 more persuasive technique in the expect-guilty condition than in the expect-innocent condition). In contrast, for the statistically significant main effect of the suspect-status independent variable, the difference in the number of persuasive techniques used between actual-guilt and actual-innocent conditions is 4.27 ($11.42 - 7.15$).
 (c) An interaction effect is unlikely. Using the subtraction method, the difference between the actual-guilt and actual-innocent conditions in the guilty-expectation condition ($7.71 - 11.96 = -4.25$) is very similar to the computed value for the innocent-expectation condition ($6.59 - 10.88 = -4.29$).

3. (a) Expect guilty: $M = 6.40$, Expect innocent: $M = 5.70$
 (b) Actual guilt: $M = 5.60$, Actual innocence: $M = 6.51$
 (c) The statistically significant main effect of the interrogator-expectation variable indicates that effort to obtain a confession (the dependent variable) was higher in the expect-guilty condition ($M = 6.40$) than in the expect-innocent condition ($M = 5.70$).

 The statistically significant main effect of the suspect-status variable indicates that effort to obtain a confession was higher in the actual-innocence condition ($M = 6.51$) than in the actual-guilt condition ($M = 5.60$).
Answer to Stretching Exercise II

A interaction effect, main effect of the task difficulty
B no interaction effect, main effects of task difficulty and anxiety level
C no interaction effect, main effects of type of media and content
D interaction effect, main effects of type of media and content
E interaction effect, main effects of delay and pattern complexity (additional statistical analyses are needed to test these effects)
F no interaction effect, main effects of delay and pattern complexity

Answer to Challenge Question 1

Graph A

Graph B

Graph C
This page intentionally left blank
PART FOUR

Applied Research
CHAPTER NINE

Single-Case Research Designs

CHAPTER OUTLINE

OVERVIEW
THE CASE STUDY METHOD
Characteristics
Advantages of the Case Study Method
Disadvantages of the Case Study Method
Thinking Critically About Testimonials Based on a Case Study

SINGLE-CASE (SMALL-n) EXPERIMENTAL DESIGNS
Characteristics of Single-Case Experiments
Specific Experimental Designs
Problems and Limitations Common to All Single-Case Designs

SUMMARY
CHAPTER 9: Single-Case Research Designs

OVERVIEW

So far in this book we have emphasized \textit{group methodology}—research designed to examine the average performance of one or more groups of participants. This was particularly evident in Chapters 6, 7, and 8 when we were considering experimental methods. In this chapter we introduce two alternative methodologies that emphasize the study of a single individual. We call these methodologies \textit{single-case research designs}.

Single-case designs have been used since scientific psychology began in the 19th century. Psychophysical methods had their origin in the work of Gustav Fechner and were described in his 1860 book, \textit{Elemente der Psychophysik}. Fechner, and countless other psychophysicists since, relied on data obtained through experiments with one or two individuals. Hermann Ebbinghaus is another major figure in the early history of psychology who used a single-case design. In fact, the single case that Ebbinghaus studied was himself. He was both the participant and the experimenter for the research he published in his monograph on memory in 1885. Over a period of many months he learned and then attempted to relearn hundreds of series of nonsense syllables. His data provided psychologists with the first systematic evidence of forgetting over time.

Single-case studies appear regularly in psychology journals, dealing with issues ranging from cognitive therapy for Vietnam veterans (Kubany, 1997) to the study of brain processes in amnesic patients (Gabrieli, Fleischman, Keane, Reminger, & Morrell, 1995) and the treatment of motor and vocal tics associated with Tourette’s syndrome (Gilman, Connor, & Haney, 2005). Cognitive psychologists who study expert performance, whether it be that of a ballet dancer, chess player, or musician, rely heavily on these methods (e.g., Ericsson & Charness, 1994). For example, several researchers recently reported on their observations of “Donny, a young autistic savant who is possibly the fastest and most accurate calendar prodigy ever described” (Thioux, Stark, Klaiman, & Schultz, 2006, p. 1155). In less than a second he can tell you the day of the week when you were born! Donny had been diagnosed with autism at age 6 years and had an IQ near the borderline of mental retardation. Yet, he was accurate 98% of the time when quizzed about days of the week between March 1, 1900, and February 28, 2100.

In this chapter we discuss two specific single-case research methodologies, the case study method and single-case experimental designs. The \textit{case study method} is frequently associated with the field of clinical psychology, but investigators from fields such as anthropology, criminology, neurology, and sociology also make use of this important method. For example, neurologist Oliver Sacks (e.g., 2007, 2012) captivated millions with his vivid case studies of individuals with peculiar, and rather fascinating, brain disorders. In his book \textit{Hallucinations}, Sacks (2012) describes what it is like to experience something that isn’t there: to smell, see, or hear things that are not real. Sacks isn’t referring to the hallucinations associated with psychotic episodes (e.g., schizophrenia), but the kinds of hallucinations that are not uncommon and to which we all are susceptible. They may arise from drug use, migraine headaches, and sensory deprivation.
(e.g., blindness) or monotony (e.g., gazing across unchanging landscapes or seascape). He explores how hallucinations may have played a role in art and literature, for example, pointing out that Lewis Carroll, the author of *Alice’s Adventures in Wonderland*, suffered from migraines, which can bring on hallucinations. These “clinical tales,” as Sacks calls them, not only provide insights into the relationship between mind and brain, but also expand our understanding of what it means to be human. We will review the advantages and the disadvantages of the case study method.

In contrast to the case study method, the emphasis in a *single-case experimental design* typically is on manipulation of variables and interpretation for a single subject, even if a few subjects or a single “group” is observed. Single-case experimental designs are also frequently called “$N = 1$ experimental designs” or “small-n research designs.” These designs are characteristic of approaches called the *experimental analysis of behavior* and *applied behavior analysis*. As you will see, these approaches represent basic and applied applications, respectively, of a small-n approach. Single-case designs are more systematic and controlled than are case studies. We will examine the rationale behind the use of these designs and provide specific illustrations of the more common single-case experimental designs. These experimental designs represent a special case of the repeated measures design introduced in Chapter 7.

THE CASE STUDY METHOD

Characteristics

- Case studies, intensive descriptions and analyses of individuals, lack the degree of control found in small-n experimental designs.
- Case studies are a source of hypotheses and ideas about normal and abnormal behavior.

A *case study* is an intensive description and analysis of a single individual. Case studies frequently make use of qualitative data, but this is not always the case (e.g., Smith, Harré, & Van Langenhove, 1995). Researchers who use the case study method obtain their data from several sources, including naturalistic observation and archival records (Chapter 4), interviews, and psychological tests (Chapter 5). Consider, for example, case studies of Poco and Safari, two chimpanzees rescued from the African bushmeat and pet trade (Lopresti-Goodman, Kameka, & Dube, 2013). These animals had been placed in sanctuaries after “living alone on display for humans at businesses for the first 7 to 8 years of their lives” (p. 1). Researchers combined information from interviews conducted with caregivers and direct observation of behaviors to assess the psychological damage. Unfortunately, decades after their rescue, the chimpanzees still engaged in stereotypical behaviors resulting from the early trauma (see Box 9.1).

A clinical case study frequently describes the application and results of a particular treatment. For example, a clinical case study may describe an individual’s symptoms, the methods used to understand and treat the symptoms, and evidence for the treatment’s effectiveness. Treatment variables in clinical case
Young chimpanzees in the wild will spend the first five years of their life with their mother. However, in various African countries adult chimpanzees are hunted illegally for their meat (bushmeat) and their young sold as “pets.” Consequently, many of these orphaned chimpanzees experience early maternal separation and years of highly restricted captivity (e.g., caged at businesses to attract tourists). The Sweetwaters Chimpanzee Sanctuary in Nanyuki, Kenya, is one of multiple sanctuaries devoted to the care of orphaned and/or confiscated chimpanzees (see Lopresti-Goodman et al., 2013).

Researchers at the sanctuary sought to assess psychological distress in adult chimpanzees by preparing a case study. Gashuhe is a 14-year-old adult male chimpanzee who was rescued at about age 9. Until that time he had lived alone in his own excrement in a tiny outdoor cage unprotected from the elements. Of particular interest was the extent to which Gashuhe’s abnormal behaviors (e.g., eating of feces, rocking behaviors, self-clasping, self-injurious behaviors) are indicative of similar psychopathology in humans. The researchers conducted in-depth interviews of caregivers and observed Gashuhe’s behavior over a 7-day period. The observer used a checklist of abnormal behaviors related to human symptoms of psychopathology, but adapted for chimpanzee behaviors (see Ferdowsian et al., 2011).

Gashuhe met DSM-5 criteria for post-traumatic stress disorder (PTSD), an anxiety disorder characterized by such behaviors as being easily anxious or startled, avoiding certain places and people, excessive outbursts, and constantly being on guard (hypervigilance). In addition, he appeared to experience dissociative episodes in which parts of his body seemed foreign to him and attacked him, and the only way he could stop it was to fight back (e.g., biting and wrestling with his attacking leg). Although diagnosing chimpanzees with psychopathology is not without controversy, this case study calls attention to the devastating lifelong consequences of keeping chimpanzees as “pets” and suggests possible therapies based on treatment of human mental illness. (DSM-5 was discussed in Chapter 2. Information about Gashuhe was provided by Dr. Lopresti-Goodman.)

FIGURE 9.1 (a) Gashuhe is an orphaned chimpanzee suffering from trauma-related disorders. (b) Behavioral scientists, such as Dr. Stacy Lopresti-Goodman, use the case study method to assess the long-term effects of early maternal deprivation and social isolation on chimpanzees.
This article reports on the use of self-management training (SMT), a therapeutic strategy which capitalizes on the advantages of brief therapies, while at the same time reducing the danger of leaving too many tasks not fully accomplished. . . . The essence of this approach involves teaching the client how to be his or her own behavior therapist. The client is taught how to assess problems along behavioral dimensions and to develop specific tactics, based on existing treatment techniques, for overcoming problems. As this process occurs, the traditional client–therapist relationship is altered considerably. The client takes on the dual role of client and therapist, while the therapist takes on the role of supervisor.

BOX 9.2

CAN CLIENTS BE THEIR OWN THERAPISTS? A CASE STUDY ILLUSTRATION

The case of Susan

Susan, a 28-year-old married woman, entered therapy complaining that she suffered from a deficient memory, low intelligence, and lack of self-confidence. The presumed deficiencies “caused” her to be inhibited in a number of social situations. She was unable to engage in discussions about films, plays, books, or magazine articles “because” she could not remember them well enough. She often felt that she could not understand what was being said in a conversation and that this was due to her low intelligence. She attempted to hide her lack of comprehension by adopting a passive role in these interactions and was fearful lest she be discovered by
being asked for more of a response. She did not trust her own opinions and, indeed, sometimes doubted whether she had any. She felt dependent on others to provide opinions for her to adopt.

Administering a Wechsler Adult Intelligence Scale (WAIS), I found her to have a verbal IQ of about 120, hardly a subnormal score. Her digit span indicated that at least her short-term memory was not deficient. The test confirmed what I had already surmised from talking with her: that there was nothing wrong with her level of intelligence or her memory. After discussing this conclusion, I suggested that we investigate in greater detail what kinds of things she would be able to do if she felt that her memory, intelligence, and level of self-confidence were sufficiently high. In this way, we were able to agree upon a list of behavioral goals, which included such tasks as stating an opinion, asking for clarification, admitting ignorance of certain facts, etc. During therapy sessions, I guided Susan through overt and covert rehearsals of anxiety-arousing situations . . . structured homework assignments which constituted successive approximations of her behavioral goals, and had her keep records of her progress. In addition, we discussed negative statements which she was making to herself and which were not warranted by the available data (e.g., “I’m stupid”). I suggested that whenever she noticed herself making a statement of this sort, she counter it by intentionally saying more appropriate, positive statements to herself (e.g., “I’m not stupid—there is no logical reason to think that I am”).

During the fifth session of therapy, Susan reported the successful completion of a presumably difficult homework assignment. Not only had she found it easy to accomplish, but, she reported, it had not aroused any anxiety, even on the first trial. . . . It was at this point that the nature of the therapeutic relationship was altered. During future sessions, Susan rated her progress during the week, determined what the next step should be, and devised her own homework assignments. My role became that of a supervisor of a student therapist, reinforcing her successes and drawing attention to factors which she might be overlooking.

After the ninth therapy session, direct treatment was discontinued. During the following month, I contacted Susan twice by phone. She reported feeling confident in her ability to achieve her goals. In particular, she reported feeling a new sense of control over her life. My own impressions are that she had successfully adopted a behavioral problem-solving method of assessment and had become fairly adept at devising strategies for accomplishing her goals.

Follow-up

Five months after termination of treatment, I contacted Susan and requested information on her progress. She reported that she talked more than she used to in social situations, was feeling more comfortable doing things on her own (i.e., without her husband), and that, in general, she no longer felt that she was stupid. She summarized by saying: “I feel that I’m a whole step or level above where I was.”

I also asked her which, if any, of the techniques we had used in therapy she was continuing to use on her own. . . . Finally, she reported that on at least three separate occasions during the 5-month period following termination of treatment, she had told another person: “I don’t understand that—will you explain it to me?” This was a response which she had previously felt she was not capable of making, as it might expose her “stupidity” to the other person.

Three months after the follow-up interview, I received an unsolicited letter from Susan (I had moved out of state during that time), in which she reminded me that “one of [her] imaginary exercises was walking into a folk dancing class and feeling comfortable; well, it finally worked.”*

Advantages of the Case Study Method

- Case studies provide new ideas and hypotheses, opportunities to develop new clinical techniques, and a chance to study rare phenomena.
- Scientific theories can be challenged when the behavior of a single case contradicts theoretical principles or claims, and theories can receive tentative support using evidence from case studies.
- Idiographic research (the study of individuals to identify what is unique) complements nomothetic research (the study of groups to identify what is typical).

Sources of Ideas About Behavior Case studies provide a rich source of information about individuals and insights into possible causes of people’s behavior. These insights, when translated into research hypotheses, can then be tested using more controlled research methods. This aspect of the case study method was acknowledged by the therapist when discussing the successful psychotherapy with the woman named Susan. He stated that the “conclusions [of this case study] . . . should be viewed as tentative. It is hoped that the utility of [this technique] will be established by more controlled research” (p. 305). The case study method is a natural starting point for a researcher who is entering an area of study about which relatively little is known.

Opportunity for Clinical Innovation The case study method provides an opportunity “to try out” new therapeutic techniques or to try unique applications of existing techniques. The use of self-management training (SMT) in psychotherapy represents a clinical innovation because it changed the typical client–therapist relationship. The SMT approach is based on teaching clients to be their own therapists—in other words, to identify problems and design behavioral techniques for dealing with them. The client is both client and therapist, while the therapist acts as supervisor.

Method to Study Rare Phenomena Case studies are also useful for studying rare events. Some events appear so infrequently in nature that we can describe them only through the intensive study of single cases. Many of the case studies described in books by Oliver Sacks, for example, describe individuals with rare brain disorders. The study of autistic savants and other individuals with exceptional memory abilities, which we mentioned at the beginning of this chapter, are also examples of how the case study is used to investigate rare events.

Challenge to Theoretical Assumptions A theory that all Martians have three heads would quickly collapse if a reliable observer spotted a Martian with only two heads. The case study method can often advance scientific thinking by providing a “counterinstance”: a single case that violates a general proposition or universally accepted principle (Kazdin, 2011). Consider a theory suggesting that the ability to process and produce human speech is to some extent based on our ability to appreciate tonality, especially in such tonally dependent languages as Chinese. The ability to process speech intonations and inflections, as well as the
“sing-song” aspect of some speech, would seem to bear a resemblance to music appreciation. How would such a theory explain normal speech perception and production by someone who cannot hear music? Are there such individuals?

Oliver Sacks (2007) relates several case studies of persons with congenital “amusia,” or the inability to hear music. One individual, for example, was a woman who had never heard music, at least not in the way music is heard by most of us. She could not discriminate between melodies, nor tell if one musical note was higher or lower. When asked what music sounded like to her, she replied that it was like someone throwing pots and pans on the floor. Only in her seventies was her condition diagnosed and she was introduced to others with this unusual neurological disorder. Yet she and others with amusia show normal speech perception and production. Clearly, a theory closely linking language ability and musical appreciation would need to be modified based on these case studies.

Tentative Support for a Psychological Theory Evidence from a case study can provide tentative support for a psychological theory. Although results of case studies are not used to provide conclusive evidence for a particular hypothesis, the outcome of a case study can sometimes provide important evidence in support of a psychological theory.

An illustration that case studies can provide support for a theory comes from the memory literature. In the 1960s, Atkinson and Shiffrin proposed a model of human memory that was to have considerable influence on research in this field for decades to come. The model, which was based on principles of information processing, described both a short-term memory (STM) system and a long-term memory (LTM) system. Although results of numerous experiments provided evidence for this dual nature of our memory, Atkinson and Shiffrin considered the results of several case studies as “perhaps the most convincing demonstrations of a dichotomy in the memory system” (1968, p. 97). These case studies involved patients who had been treated for epilepsy via surgical removal of parts of the brain within the temporal lobes, including a subcortical structure known as the hippocampus. Of particular importance to Atkinson and Shiffrin’s theory was the case study of a patient known as H.M. (see Hilts, 1995; Scoville & Milner, 1957). Following the brain operation, H.M. was found to have a disturbing memory deficit. Although he could carry on a normal conversation and remember events for a short period of time, H.M. could not remember day-to-day events. He was able to read the same magazine over and over again without finding its contents familiar. It looked as though H.M. had an intact short-term memory system but could not get information into a long-term memory system. Subsequent testing of H.M. and patients with similar memory deficits revealed that the nature of this memory problem is more complex than originally suggested, but the case study of H.M. continues to be important whenever theories of human memory are discussed (for example, see Schacter, 1996, and Box 9.3).

Complement to the Nomothetic Study of Behavior Psychology (like science in general) seeks to establish broad generalizations, “universal laws” that will
apply to a wide population of organisms. As a consequence, psychological research is often characterized by studies that use the nomothetic approach. The **nomothetic approach** involves large numbers of participants, and it seeks to determine the “average” or typical performance of a group. This average may or may not represent the performance of any one individual in the group. Rather, a researcher hopes to be able to predict, on the basis of this average performance, what organisms will be like “in general.”

Some psychologists, notably Allport (1961), argue that a nomothetic approach is inadequate—that the individual is more than what can be represented by the collection of average values on various dimensions. Allport argued that the individual is both unique and lawful; the individual operates in accordance with internally consistent principles. Allport argued further that the study of the individual, called an **idiographic approach** to research, is an important goal for psychological research (see also Smith et al., 1995).

Allport illustrated the need for an idiographic approach by describing the task confronting the clinical psychologist. The clinician’s goal “is not to predict the aggregate, but to foretell ‘what any one man [sic] will do.’ In reaching this ideal, actuarial predictions may sometimes help, universal and group norms are useful, but they do not go the whole distance” (p. 21). Allport suggested that our approach to understanding human nature should be neither exclusively nomothetic nor exclusively idiographic, but should represent an “equilibrium” between the two. At the very least the idiographic approach, as represented by the case study method, permits the kind of detailed observation that has the power to reveal various nuances and subtleties of behavior that a “group” approach may miss. And, as you have seen, case studies have the ability to teach us about typical or average behavior by carefully studying individuals who are atypical.
Disadvantages of the Case Study Method

- Researchers are unable to make valid causal inferences using the case study method because extraneous variables are not controlled and several “treatments” may be applied simultaneously in case studies.
- Observer bias and biases in data collection can lead to incorrect interpretations of case study outcomes.
- Whether results from a case study may be generalized depends on the variability within the population from which the case was selected; some characteristics (e.g., personality) vary more across individuals than others (e.g., visual acuity).

Difficulty of Drawing Cause-Effect Conclusions

You are well aware by now that one of the goals of science is to discover the causes of phenomena—to identify unambiguously the specific factors that produce a particular event. One disadvantage of the case study method is that cause-effect conclusions can rarely be
drawn based on results from case studies. This disadvantage arises primarily because researchers are unable to control extraneous variables in case studies. Thus, the behavior changes that take place in case studies can be explained by several plausible alternative hypotheses.

Consider, for instance, the treatment of Susan through SMT (see Box 9.2). Although Susan apparently benefited from the SMT therapy, can we be sure that SMT caused her improvement? Many illnesses and emotional disorders improve without treatment. Case study researchers must always consider the alternative hypothesis that individuals may have improved without treatment. In addition, several aspects of the situation may have been responsible for Susan’s improvement. Her care was in the hands of a “clinical psychologist” who provided reassurance. Also, Susan may have changed her attitude toward herself because of the insights of her therapist and the feedback she received from her test results, not because of SMT. The therapist also asked Susan, as part of her therapy, to rehearse anxiety-arousing situations covertly and overtly. This technique is similar to rehearsal desensitization, which may itself be an effective treatment (Rimm & Masters, 1979).

Because several treatments were used simultaneously, we cannot argue convincingly that SMT was the unambiguous “cause” of Susan’s improvement. Consequently, the inferences based on the results of this study should be considered tentative until they are investigated more rigorously.

Potential Sources of Bias
The outcome of a case study often depends on conclusions drawn by a researcher who is both participant and observer (Bolgar, 1965). That is, a therapist observes the client’s behavior and participates in the therapeutic process. It is reasonable to assume that the therapist may be motivated to believe that the treatment helps the client. As a result, the therapist, even if well intentioned, may not accurately observe the client’s behavior. The potential for biased interpretation is not peculiar to the case study method. We have previously considered the problems of observer bias (Chapter 4) and experimenter bias (Chapter 6).

The outcome of a case may be based mainly on the “impressions” of the observer (Hersen & Barlow, 1976). For example, the therapist described the client Susan’s “feelings” about her ability to achieve her goals and told how she reported a “sense of control” over her life. He stated that his “impressions are that she successfully adopted a behavioral problem-solving method of assessment and had become fairly adept at devising strategies for accomplishing her goals” (p. 304). A serious weakness of the case study method is that interpretation of the outcome is often based solely on the subjective impressions of the observer.

Bias can also occur in case studies when information is obtained from sources such as personal documents, session notes, and psychological tests. Archival records, as we described in Chapter 4, are open to several sources of bias. Further, when individuals provide information about themselves (self-reports), they may distort or falsify the information in order to “look good.” This possibility existed in Susan’s treatment. We have no way of knowing whether she exaggerated her self-reports of improvement. Another potential source of bias occurs when reports are based on individuals’ memory. Cognitive psychologists
have demonstrated repeatedly that memory can be inaccurate, particularly for events that happened long ago.

Problem of Generalizing from a Single Individual One of the most serious limitations of the case study method concerns the external validity of case study findings. To what extent can we generalize the findings for one individual to a larger population? Our initial response might be that the findings for one person cannot be generalized at all. Our ability to generalize from a single case, however, depends on the degree of variability in the population from which the case was selected. For example, psychologists who study visual perception are often able to generalize their findings based on the study of one individual. Vision researchers assume that visual systems in all humans are very similar. Therefore, only one or several cases may be used to understand how the visual system works. In contrast, other psychological processes are much more variable across individuals, such as learning, memory, emotions, personality, and mental health. When studying processes that vary greatly in the population, it is impossible to claim that what is observed in one individual will hold for all individuals.

Thus, even if we accept the therapist’s conclusion regarding the effectiveness of the SMT technique of psychotherapy, we do not know whether this particular treatment would be as successful for other individuals who might differ from the client Susan in any of numerous ways, including intelligence, age, family background, and gender. As with findings from group methodologies, the important next step is to *replicate* the findings across a variety of individuals.

Thinking Critically About Testimonials Based on a Case Study

- Being mindful of the limitations of the case study method can be helpful when evaluating individuals’ testimonials about the effectiveness of a particular treatment.

 Case studies sometimes offer dramatic demonstrations of “new” findings or provide evidence for the “success” of a particular treatment. Consider advertisements for products you see in the media (e.g., infomercials). How many people who worry about their weight can resist the example of a formerly overweight individual who is shown to have lost considerable weight by using Product X? Evidence from case studies can be very persuasive. This is both an advantage and a disadvantage for the scientific community. Case studies demonstrating new or unusual findings may lead scientists to reconsider their theories or may lead them to new and fruitful avenues of research. Case studies, then, can help advance science.

 The disadvantage of case studies, however, is that their findings are often accepted uncritically. Individuals eager to lose weight or be cured of an illness may not consider the limitations of case study evidence. Instead, the evidence offers a ray of hope for a cure. For people who have (or think they have) few alternatives, this grasping at straws may not be totally unreasonable. Too often, however, people do not consider (perhaps they do not want to consider) the reasons a particular treatment would *not* work for them.
SINGLE-CASE (SMALL-n) EXPERIMENTAL DESIGNS

• In applied behavioral analysis, the methods developed within the experimental analysis of behavior are applied to socially relevant problems.

In the remainder of this chapter we will describe single-case experimental (small-n) designs. These experimental designs have their roots in an approach to the study of behavior that was developed by B. F. Skinner in the 1930s. The approach is called an *experimental analysis of behavior*.

In this approach (unlike the group methodologies discussed in previous chapters), it is often the case that the sample is a single subject or a small number of subjects (small-n). Experimental control is demonstrated by arranging experimental conditions such that the individual’s behavior changes systematically with the manipulation of an independent variable. As Skinner (1966) commented,

> Instead of studying a thousand rats for one hour each, or a hundred rats for ten hours each, the investigator is likely to study one rat for a thousand hours. The procedure is not only appropriate to an enterprise which recognizes individuality; it is at least equally efficient in its use of equipment and of the investigator’s time and energy. The ultimate test of uniformity or reproducibility is not to be found in the methods used but in the degree of control achieved, a test which the experimental analysis of behavior usually passes easily. (p. 21)

Often there is a minimum of statistical analysis associated with single-case experimental designs. Conclusions regarding the effects of an experimental variable (treatment) typically are made by visually inspecting the behavioral record in order to observe whether behavior changed systematically with the introduction and withdrawal of the experimental treatment. Therefore, there is considerable emphasis on appropriately defining, observing, and recording behavior. Has the behavior been defined clearly and objectively so that it can be reliably observed and recorded? Will a continuous (cumulative) record of behavior be kept or will observations be made at regular intervals? Although frequency of responding is a common measure of behavior, duration of behavior or other characteristics are sometimes measured. Moreover, as you will see later in this chapter, statistical issues sometimes do arise, such as excessive variability in the behavioral record, and must be dealt with. A discussion of other statistical issues associated with single-case research designs would necessarily go beyond our brief introduction (see, for example, Kratochwill & Levin, 1992; Parker & Brossart, 2003).

In *applied behavior analysis*, methods associated with the experimental analysis of behavior are applied to socially relevant problems. These applications are frequently referred to as *behavior modification*, but when applied to clinical populations the term *behavior therapy* is preferred (Wilson, 1978). Behavior therapy is seen by many psychologists as a more effective approach to clinical treatment than that based on a psychodynamic model of therapy. Instead of seeking
insight into the unconscious roots of problems, behavior therapy focuses on observable behavior. Numerous studies have been published showing how behavior modification and behavior therapy can be employed successfully to change the behavior of stutterers, normal and mentally impaired children and adults, psychiatric patients, and many others (see Figure 9.2). Approaches based on applied behavior analysis have also been successfully used by school psychologists in educational settings (see Kratochwill & Martens, 1994). A primary source for these published studies is the *Journal of Applied Behavior Analysis*.

Characteristics of Single-Case Experiments

- Researchers manipulate an independent variable in single-case experiments; therefore, these designs allow more rigorous control than case studies.
- In single-case experiments, baseline observations are first recorded to describe what an individual’s behavior is like (and predicted to be like in the future) without treatment.
PART IV: Applied Research

• Baseline behavior and behavior following the intervention (treatment) are compared using visual inspection of recorded observations.

The single-case experiment, as its name suggests, typically focuses on an examination of behavior change in one individual or, at most, a few individuals. However, as we will see later in this chapter, the behavior of a single “group” of individuals also may be the focus. In a single-case experiment the researcher contrasts treatment conditions for one individual whose behavior is being continuously monitored. That is, the independent variable of interest (usually a treatment) is manipulated systematically for one individual. Single-case experimental designs are important alternatives to the relatively uncontrolled case study method (Kazdin, 2011).

Another advantage of single-case experiments over multiple-group experiments involves the ethical problem of withholding treatment that can arise in clinical research. In a multiple-group design, a potentially beneficial treatment may be withheld from individuals in order to provide a control group that satisfies the requirements of internal validity. Because single-case experimental designs contrast conditions of “no-treatment” and “treatment” within the same individual, the problem of withholding treatment can be avoided. Moreover, investigators doing clinical research often have difficulty gaining access to enough clients to do a multiple-group experiment. For instance, a clinician may be able to identify only a few clients experiencing claustrophobia (excessive fear of enclosed spaces). The single-case experiment provides a practical solution to the problem of investigating cause-effect conclusions when only a few participants are available.

Key Concept

The outcome of a group experiment may lead to recommendations about what treatments are effective “in general” for modifying behavior. It is not possible to say, however, what the effect of that treatment would be on any particular individual based on a group average. Single-case designs are well suited for testing whether the findings from group methodology may be applied successfully to the individual client or patient (Kazdin, 2011).

Another advantage of single-case experiments over multiple-group experiments involves the ethical problem of withholding treatment that can arise in clinical research. In a multiple-group design, a potentially beneficial treatment may be withheld from individuals in order to provide a control group that satisfies the requirements of internal validity. Because single-case experimental designs contrast conditions of “no-treatment” and “treatment” within the same individual, the problem of withholding treatment can be avoided. Moreover, investigators doing clinical research often have difficulty gaining access to enough clients to do a multiple-group experiment. For instance, a clinician may be able to identify only a few clients experiencing claustrophobia (excessive fear of enclosed spaces). The single-case experiment provides a practical solution to the problem of investigating cause-effect conclusions when only a few participants are available.

Key Concept

• Baseline behavior and behavior following the intervention (treatment) are compared using visual inspection of recorded observations.

The single-case experiment, as its name suggests, typically focuses on an examination of behavior change in one individual or, at most, a few individuals. However, as we will see later in this chapter, the behavior of a single “group” of individuals also may be the focus. In a single-case experiment the researcher contrasts treatment conditions for one individual whose behavior is being continuously monitored. That is, the independent variable of interest (usually a treatment) is manipulated systematically for one individual. Single-case experimental designs are important alternatives to the relatively uncontrolled case study method (Kazdin, 2011). Single-case experiments also have advantages over multiple-group experiments, as described in Box 9.4.

The first stage of a single-case experiment is usually an observation stage, or baseline stage. During this stage researchers record the subject’s behavior prior to any treatment. Clinical researchers typically measure the frequency of the target behavior within a unit of time, such as a day or an hour. For example, a researcher might record the number of times during a 10-minute interview that an excessively shy child makes eye contact, the number of headaches reported each week by a migraine sufferer, or the number of verbal pauses per minute made by a chronic stutterer. Using the baseline record, researchers are able to describe behavior before they provide treatment. Most importantly, the baseline allows researchers to predict what behavior will be like in the future without treatment (Kazdin, 2011). Of course, unless behavior is actually monitored, researchers don’t know for sure what future behavior will be like, but
baseline measures allow them to predict what the future holds if no treatment is provided.

Once researchers observe that the individual’s behavior is relatively stable—that is, it exhibits little fluctuation between recording intervals—they introduce an intervention (treatment). The next step is to record the individual’s behavior with the same measures used during the baseline stage. By comparing the behavior observed immediately following an intervention with the baseline performance, researchers are able to determine the effect of the treatment. The effect of the treatment is seen most easily using a graph of the behavioral record. How did behavior change, in other words, following the experimental treatment? By visually inspecting the difference between behavior following treatment and what was predicted would occur without treatment, we can infer whether the treatment effectively changed the individual’s behavior. The most common single-case designs are the ABAB design and multiple-baseline designs.

Specific Experimental Designs

- In the ABAB design, baseline (A) and treatment (B) stages are alternated to determine the effect of treatment on behavior.
- Researchers conclude that treatment causes behavior change when behavior changes systematically with the introduction and withdrawal of treatment.
- Interpreting the causal effect of the treatment is difficult in the ABAB design if behavior does not reverse to baseline levels when treatment is withdrawn.
- Ethical considerations may prevent psychologists from using the ABAB design.
- In multiple-baseline designs, a treatment effect is shown when behaviors in more than one baseline change only following the introduction of a treatment.
- Multiple baselines may be observed across individuals, behaviors, or situations.
- Interpreting the causal effect of treatment is difficult in multiple-baseline designs when changes are seen in a baseline before an experimental intervention; this can occur when treatment effects generalize.

The ABAB Design

Researchers use the **ABAB design** to demonstrate that behavior changes systematically when they alternate “no-treatment” and “treatment” conditions. An initial baseline stage (A) is followed by a treatment stage (B), next by a return to baseline (A), and then by another treatment stage (B). Because treatment is removed during the second A stage, and any improvement in behavior is likely to be reversed at this point, this design is also called a **reversal design**. The researcher using the ABAB design observes whether behavior changes immediately upon introduction of a treatment variable (first B), whether behavior reverses when treatment is withdrawn (second A), and whether behavior improves again when treatment is reintroduced (second B). If behavior changes following the introduction and withdrawal of treatment, the researcher gains considerable evidence that the treatment caused the behavior change.
An ABAB design was used to assess the effects of facial screening on the maladaptive behavior of a severely mentally impaired 8-year-old girl (Horton, 1987). Facial screening is a mildly aversive technique involving the application of a face cover (e.g., a soft cloth) when an undesirable behavior occurs. Previous research had shown this technique to be effective in reducing the frequency of self-injurious behaviors such as face slapping. This study sought to determine whether it would reduce the frequency of spoon banging by the young child at mealtime. The spoon banging prevented the girl from dining with her classmates at the school for exceptional children that she attended. The banging was disruptive not only because of the noise but also because it often led her to fling food on the floor or resulted in her dropping the spoon on the floor.

A clear definition of spoon banging was made to distinguish it from normal scooping motions. Then, a paraprofessional was trained to make observations and to administer the treatment. A frequency count was used to assess the magnitude of spoon banging within each 15-minute eating session. During the initial, or baseline, period the paraprofessional recorded frequency and, with each occurrence of the response, said “no bang,” gently grasped the girl’s wrist, and returned her hand to her dish. The procedure was videotaped, and an independent observer viewed the films and recorded frequency as a reliability check. Interobserver reliability was approximately 96%. The baseline stage was conducted for 16 days.

The first treatment period began on Day 17 and lasted for 16 days. Each time spoon banging was observed, the paraprofessional continued to give the corrective feedback of “no bang” and returned the girl’s hand to her dish. However, the paraprofessional now also pulled a terry-cloth bib over the girl’s entire face for 5 seconds. Release from facial screening was contingent on the participant’s not banging for 5 seconds. The first treatment phase was followed by a second baseline period and another treatment phase. Posttreatment observations were also made at 6, 10, 15, and 19 months.

Figure 9.3 shows changes in the frequency of the girl’s spoon-banging behavior as a function of alternating baseline and treatment phases. Facial screening was not only effective in reducing this behavior during treatment phases; follow-up observations revealed that the spoon banging was still absent months later. Following the final treatment phase, the girl no longer required direct supervision during mealtime at either school or home and was permitted to eat with her peers. There was clear evidence that the application of the facial screening was responsible for eliminating the spoon banging. The facial screening was the only treatment that was administered, and visual inspection of Figure 9.3 shows that behavior changed systematically with the introduction and withdrawal of treatment. The facial-screening technique was a successful procedure for controlling the maladaptive behavior of the young child when other, less intrusive procedures had failed.

Methodological Issues Associated with ABAB Designs A major methodological problem that sometimes arises in the context of an ABAB procedure can be illustrated by looking again at the results shown in Figure 9.3. In the second baseline stage, when application of the facial screening was withdrawn,
spoon banging increased. That is, the improvement observed under the preceding treatment stage was reversed. What if the spoon-banging behavior had remained low even when the treatment was withdrawn? What can the researcher conclude about the effectiveness of the treatment when behavior in a second baseline stage does not revert to what it was during the initial baseline period?

There are several reasons why behavior might not revert to the baseline level when treatment is withdrawn in an ABAB design (Kazdin, 2011). One reason is that logically the behavior may not be expected to change once the treatment led to improvement, such as when treatment involves teaching individuals new skills. For example, a researcher may teach a developmentally disabled individual how to commute to work. Once the skill is learned, it is unlikely to be “unlearned” (i.e., revert to baseline) when the treatment is withdrawn. The solution to this problem is straightforward: Researchers should not use the ABAB design when the target behavior is not expected to revert to baseline when treatment is withdrawn.

Another possible reason for why behavior doesn’t return to baseline is that a variable other than the treatment variable caused behavior to change. For example, an individual may receive increased attention from staff or others as treatment is implemented. This increased attention, rather than the treatment, may cause behavior to improve. If the attention persists even while the specific treatment is withdrawn during the second baseline stage, the behavior improvement is likely to persist as well. This explanation suggests a confounding between the treatment variable and some other, uncontrolled factor (such as attention).

It is also possible that although treatment initially caused behavior to improve, other variables took over to control the new behavior. Once again, attention may be a critical variable. When family and friends witness a change in behavior, they may pay greater attention to the individual. Think of the praise people get when they lose weight or quit smoking. This positive reinforcement (attention) may maintain the behavior change that treatment initiated. Once
treatment is withdrawn and if attention continues, we would not expect behavior to return to baseline levels.

If for whatever reason behavior does not revert to baseline levels when treatment is withdrawn, researchers cannot safely conclude that the treatment caused the initial behavior change (Kazdin, 2011). The researcher must examine the situation carefully with the hope of identifying variables that might be confounding the treatment variable or replicate the procedure with different subjects (Hersen & Barlow, 1976).

Researchers can also face an ethical problem when using the ABAB design. Suppose the treatment seems to improve the individual’s behavior relative to the baseline. Is it ethical to remove what appears to be a beneficial treatment to determine if the treatment actually caused the improvement? As you might imagine, withdrawing a beneficial treatment may not be justified in all cases. Some behaviors might be life-threatening or exceptionally debilitating, and it would not be ethical to remove treatment once a positive effect is observed. For example, some autistic children exhibit self-injurious behaviors such as head banging. If a clinical researcher succeeds in reducing the frequency of this behavior, it would be unethical to withdraw treatment to meet the requirements of the ABAB design. Fortunately, there is a single-case experimental design that does not involve withdrawal of treatment and that may be appropriate in such situations—the multiple-baseline design.

The Multiple-Baseline Design The multiple-baseline design also makes use of baseline and treatment stages, but not by withdrawing a treatment as in the ABAB design. As the name suggests, researchers establish several baselines when using a multiple-baseline design. The multiple-baseline design demonstrates the effect of a treatment by showing that behaviors in more than one baseline change following the introduction of a treatment.

Let us illustrate the multiple-baseline design with an example from the Journal of Applied Behavior Analysis. Researchers used a multiple-baseline design across situations to treat Leslie, a 9-year-old girl with selective mutism (Lang, Regester, Mulloy, Rispoli, & Botout, 2011). Selective mutism is a childhood disorder in which the child speaks in some environments and not others. For example, the child may speak at home but not at school or in community settings (e.g., restaurants, parks). Leslie spoke frequently at home but not in many settings outside the home. Her mutism had persisted for more than a year and led to difficulties in various social situations such as summer camp and swim lessons.

Treatment consisted of role playing, video self-modeling, and reinforcement conducted in Leslie’s home. During treatment sessions the experimenter asked Leslie to role play by responding to questions that occur in various situations (e.g., restaurant: “What would you like to order?”). She then viewed herself on videotape and received praise for her responses and for initiating speech (see Lang et al., 2011, for details).

As in all multiple-baseline designs, two or more baselines are first established and then the treatment is introduced at different times. In this study, baselines were observed for three different situations: a restaurant, an office building where she met new adults, and at a game table with new peers. Behavior was monitored
in all of the situations and treatment applied to one situation at a time. Both before (baseline) and after treatment, the experimenter escorted Leslie to each situation with her mother and recorded three different dependent variables: responses to questions, initiating speech, and “breakdowns” (i.e., failures in communication). Researchers monitored her behaviors with the aid of a handheld video recorder and subsequently obtained measures of interobserver agreement.

In a multiple-baseline design, treatment is introduced in one situation while continuing to monitor behavior in the other situations. If the treatment is effective, then a change in behavior will be observed immediately following the application of a treatment, but not in the remaining baseline situations. Thus, the key evidence for the effectiveness of treatment in the multiple-baseline design is the demonstration that behavior changes only when the treatment is introduced.

Figure 9.4 displays data for one of the dependent variables: Leslie’s responses to questions. The vertical line in each graph indicates when treatment was introduced in the situation. As you can see, Leslie made no responses during the
baseline sessions. Immediately after treatment was initiated in each situation, the frequency of responses increased. The results show that relatively few sessions with this particular treatment successfully improved Leslie’s mutism across three social situations.

There are several variations on the multiple-baseline design, depending on whether multiple baselines are established for different individuals, for different behaviors in the same individual, or for the same individual in different situations. Although they sound complex, multiple-baseline designs are frequently used and easily understood.

In the **multiple-baseline design across individuals**, baseline observations of behavior are first established for different individuals. When the behavior of each individual has stabilized, an intervention is introduced for one individual, then for another individual, later for another, and so on. This was the design used in a study reported in the *Journal of Child Psychology and Psychiatry* (Whalen & Schreibman, 2003). Researchers sought to modify the “joint attention” behaviors in several 4-year-old children with autism. Joint attention refers to the ability to pay attention to both an object and a person in a social situation, and research has shown that autism is associated with deficits in joint attention. Treatment consisted of behavior modification techniques that taught children joint attention behaviors. Looking at Figure 9.4, imagine each baseline represents a different individual rather than a situation. As in all multiple-baseline designs, the treatment is introduced at a different time for each baseline (in this case, for each individual). If the treatment is effective, then a change in behavior will occur immediately following the application of the treatment in each individual. Results for the multiple-baseline design showed joint attention behaviors improved when treatment was introduced for each child. The researchers suggested that training parents in the treatment techniques may be a way to maintain joint attention skills outside the treatment setting.

A third type of multiple-baseline design involves establishing two or more baselines by observing different behaviors in the same individual, a **multiple-baseline design across behaviors**. A treatment is directed first at one behavior, then at another, and so on. Evidence for a causal relationship between treatment and behavior is obtained if performance changes for each behavior immediately after the treatment is introduced. In another study of children with autism, researchers attempted to teach several different socially appropriate affective behaviors to youths with autism (Gena, Krantz, McClannahan, & Poulson, 1996). Children with autism often show inappropriate affective behaviors, which limit their opportunities to communicate effectively with others and to develop interpersonal relationships. Treatment included verbal praise and tokens (exchangeable for rewards) that were delivered contingent on appropriate affective responses in three or four different behavior categories. Target behaviors were selected from among the following: showing appreciation, talking about favorite things, laughing about absurdities, showing sympathy, and indicating dislike. Visual inspection of the behavioral records showed evidence for the effectiveness of the treatment. As required in the multiple-baseline design, the different affective behaviors changed immediately after introduction of the intervention for that behavior.
Methodological Issues Associated with Multiple-Baseline Designs

• How many baselines are needed?

As with many other aspects of single-case research, there are no hard-and-fast rules for answering the question “How many baselines do I need?” The bare minimum is clearly two baselines, but three or four baselines in a multiple-baseline design are recommended (Hersen & Barlow, 1976).

• What if behavior changes before the intervention?

Problems can arise in any of the types of multiple-baseline designs when changes in behavior are seen in a baseline before the treatment has been administered. The reasons for these premature changes in a baseline are not always clear. The logic of the multiple-baseline designs depends critically on the changes in behavior occurring directly after the introduction of the treatment. Thus, when changes in baseline performance occur prior to treatment, this makes it hard to conclude that the treatment was effective. If the pretreatment changes occur in only one of several baselines (especially if there is a plausible explanation for the change based on procedural or situational factors), the multiple-baseline design may still be interpreted with some confidence. For instance, when using a multiple-baseline design across individuals, there may be an opportunity for individuals who receive treatment late in the study to see other individuals comply with the experimental treatment and imitate their behavior. In this case, pretreatment behavior changes for individuals treated last might be reasonably explained.

• What if the treatment generalizes to other behaviors or situations?

A problem sometimes seen in multiple-baseline designs occurs when changes in one behavior generalize to other behaviors or situations. In dealing with possible problems of generalization, researchers need to keep in mind the maxim “An ounce of prevention is worth a pound of cure.” If altering the behavior of one individual is likely to affect the behaviors of others, if behavior in one situation is likely to influence behavior in another situation, or if changing one type of behavior is likely to affect other behaviors, then multiple-baseline designs may need to be modified or perhaps abandoned. Unfortunately, anticipating when changes will occur simultaneously in more than one baseline is not always easy, but these problems appear to be relatively infrequent exceptions to the effects usually seen in a multiple-baseline design (Kazdin, 2011). What is clear, however, is that concluding a treatment is effective using a multiple-baseline design requires that behavior changes directly follow the introduction of the treatment in each baseline.

Problems and Limitations Common to All Single-Case Designs

• Interpreting the effect of a treatment can be difficult if the baseline stage shows excessive variability or increasing or decreasing trends in behavior.
• The problem of low external validity with single-case experiments can be reduced by testing small groups of individuals.
Problems with Baseline Records An ideal baseline record and response to an intervention are shown in panel A of Figure 9.5. Behavior during the baseline stage is very stable, and behavior changes immediately following the introduction of treatment. If this were the outcome of the first stages of either an ABAB or a multiple-baseline design, we would be headed in the direction of showing that our treatment is effective in modifying behavior. However, consider the baseline and treatment stages shown in panel B of Figure 9.5. Although the desired behavior appears to increase in frequency following an intervention, the baseline shows a great deal of variability. It is difficult to know whether the treatment produced the change or behavior just happened to be on the upswing. In general, it is hard to decide whether an intervention was effective when there is excessive variability in the baseline.

Baseline variability can come from many different sources, including errors in measurement, uncontrolled factors in the situation, and differences among subjects (Kazdin, 2011). One approach to dealing with excessive variability is to look for factors in the situation that might be producing the variability and remove them. The presence of a particular staff member, for instance, might be causing changes in the behavior of a psychiatric patient. Another approach is to “wait it out”—to continue taking baseline measures until behavior stabilizes. It is, of course, not possible to predict when and if this might occur. Introducing the intervention before behavior has stabilized, however, would jeopardize a clear interpretation of the outcome.

Panel C of Figure 9.5 illustrates another potential problem that can arise when baselines show an increasing or decreasing trend. If the goal of the intervention
was to increase frequency of behavior, the decreasing trend shown in panel C poses no problem of interpretation. An intervention that reversed the decreasing trend can be taken as evidence that the treatment was effective. If the goal of the intervention was to reduce the frequency of a behavior, however, the problem would be more serious. This situation is illustrated in panel D. Here we see a decreasing trend in the baseline stage and continued reduction of frequency in the treatment stage. It would be difficult to know whether the treatment had an effect because the decrease following the intervention could be due to the intervention or to a continuation of the baseline trend. When an intervention is expected to have an effect in the same direction as a baseline trend, the change following the intervention must be much more marked than that shown in panel D to support a conclusion that the treatment had been effective. It is often difficult to say what constitutes a “marked” change when visually inspecting the behavioral record (see, for example, Parsonson & Baer, 1992). It is an especially good idea in these circumstances to complement the observations of the target behavior with other means of evaluation such as making comparisons with “normal” individuals or asking for subjective evaluations from others familiar with the individual.

Questions of External Validity A frequent criticism of single-case research designs is that the findings have limited external validity. In other words, the single-case experiment appears to have the same limitation as the case study method. Because each person is unique, it can be argued there is no way to know whether the effect of a particular intervention will generalize to other individuals. There are several reasons, however, why the external validity of findings from single-case experiments may not be as limited as it seems.

First, the interventions used in single-case experiments are often potent ones and frequently produce dramatic and sizable changes in behavior (Kazdin, 1978). Consequently, these types of treatments are often found to generalize to other individuals. Other evidence for the generality of effects based on single-case experiments comes from the use of multiple-baseline designs. A multiple-baseline design across individuals, for example, is often able to show that a particular intervention successfully modified the behavior of several individuals. Similarly, multiple baselines across situations and behaviors can attest to the external validity of a treatment effect. As one well-known researcher points out:

Replication is the key in science to address reliability of findings but also to evaluate generality across conditions (subjects, investigators). We want to identify those interventions that are robust across many conditions. When interventions are not robust across conditions we want to know the restrictions and the moderating variables. Many studies and many different methods of study are needed. After decades of research and decades of concerns, in fact there is no clear evidence that findings from single-case and between-group experiments and quasi-experiments are any more or less generalizable across individuals and new conditions. (Kazdin, 2011, p. 377)

You should recognize this as a call for a multimethod approach to psychological science. We will discuss “quasi-experiments” in the next chapter.
Two important single-case research designs are the case study and the single-case experiment, or small-\textit{n} design. The case study method can suggest hypotheses about behavior, provide an opportunity for clinical innovation (e.g., trying out new approaches to therapy), permit the intensive study of rare phenomena, challenge theoretical assumptions, and provide tentative support for a psychological theory. The intensive study of individuals that is the hallmark of the case study method is called idiographic research, and it can be viewed as complementary to the nomothetic approach (seeking general laws or principles) that also characterizes psychology. Problems arise when the case study method is used to draw cause-effect conclusions, or when biases in the collection of, or interpretation of, data are not identified. The case study method also involves potential problems of generalizing findings based on the study of a single individual. Moreover, the “dramatic” results obtained from some case studies, though they may give scientific investigators important insights, are frequently accepted as valid by people who are not aware of the limitations of this method.

B. F. Skinner developed the experimental analysis of behavior. Applied behavior analysis seeks to apply principles derived from an experimental analysis of behavior to socially relevant problems. The major methodology of these approaches is the single-case experiment, or small-\textit{n} research. Although there are many kinds of single-case designs, the most common are the ABAB design and the multiple-baseline design.

An ABAB design, or reversal design, allows a researcher to confirm a treatment effect by showing that behavior changes systematically with conditions of no treatment (baseline) and treatment. Methodological problems arise in this design when behavior that changed during the first treatment (B) stage does not reverse when treatment is withdrawn during the second baseline (A) stage. When this occurs, it is difficult to establish that the treatment, rather than some other factor, was responsible for the initial change. One may encounter ethical problems when using the ABAB design if a treatment that has been shown to be beneficial is withdrawn during the second baseline stage.

A multiple-baseline design demonstrates the effectiveness of a treatment by showing that behaviors across more than one baseline change as a consequence of the introduction of a treatment. Baselines are first established across different individuals, or across behaviors or across situations in the same individual. Methodological problems arise when behavior does not change immediately with the introduction of a treatment or when a treatment effect generalizes to other individuals, other behaviors, or other situations.

Problems of excessive baseline variability as well as of increasing or decreasing baselines sometimes make it difficult to interpret the outcome of single-case designs. The problem of excessive baseline variability can be approached by seeking out and removing sources of variability and by extending the time during which baseline observations are made. Increasing or decreasing baselines may require the researcher to obtain other kinds of evidence for the effectiveness of a treatment. Finally, the single-case experimental design is often
criticized for its lack of external validity. However, because treatments typically produce substantial changes in behavior, these changes can often be easily replicated in different individuals. The use of single “groups” of subjects (small-\(n\) research) can also provide immediate evidence of generality across subjects. Psychological science is best served by a multimethod approach, and replication remains the key to establishing the reliability of research findings.

KEY CONCEPTS

- case study 278
- nomothetic approach 284
- idiographic approach 284
- single-case experiment 290
- baseline stage 290
- ABAB design (reversal design) 291
- multiple-baseline design across situations 294
- multiple-baseline design across individuals 296
- multiple-baseline design across behaviors 296

REVIEW QUESTIONS

1. Identify and give an example of each of the advantages of the case study method.
2. Distinguish between a nomothetic and an idiographic approach to research.
3. Identify and give an example of each of the disadvantages of the case study method.
4. What is the major limitation of the case study method in drawing cause-effect conclusions?
5. Under what conditions might a single-case experimental design be more appropriate than a multiple-group design?
6. Distinguish between baseline and intervention stages of a single-case experimental design.
7. Why is an ABAB design also called a reversal design?
8. What methodological problems are specifically associated with an ABAB design?
9. Outline the general procedures and logic that are common to all the major forms of multiple-baseline designs.
10. What methodological problems are specifically associated with multiple-baseline designs?
11. What methodological problems must be addressed in all single-case designs?
12. What evidence supports the external validity of single-case designs?

CHALLENGE QUESTIONS

1. A case study showing how “mud therapy” was successful in treating an individual exhibiting excessive anxiety was reported in a popular magazine. The patient’s symptoms included trouble sleeping, loss of appetite, extreme nervousness when in groups of people, and general feelings of arousal that led the individual always to feel “on edge” and fearful. The California therapist who administered the mud therapy was known for this treatment, having appeared on several TV talk shows. He first taught the patient a deep relaxation technique and a “secret word” to repeat over and over in order to block out all disturbing thoughts. Then the patient was asked to lie submerged for 2 hours each day in a special wooden “calm tub” filled with mud. During this time the patient was to (continued)
practice the relaxation exercises and to concentrate on repeating the secret word whenever the least bit of anxiety was experienced. The therapy was very costly, but after 6 weeks the patient reported to the therapist that he no longer had the same feelings of anxiety that he reported previously. The therapist pronounced him cured and attributed the success of the treatment to immersion in the calming mud. The conclusion drawn by the author of the magazine article describing this therapy was that “it is a treatment that many people could benefit from.” On the basis of your knowledge of the limitations of the case study method, answer the following questions:

A What possible sources of bias were there in the study?

B What alternative explanations can you suggest for the successful treatment?

C What potential problem arises from studying only one individual?

2 A 5-year-old child frequently gets skin rashes, and the mother has been told by her family doctor that the problem is due to “something” the child eats. The doctor suggests that she “watch carefully” what the child eats. The mother decides to approach this problem by recording each day whether the child has a rash and what the child ate the day before. She hopes to find some relationship between eating a particular food and the presence or absence of the rash. Although this approach might help discover a relationship between eating certain foods and the appearance of the rash, a better approach might be one based on the logic and procedures associated with single-case designs. Explain how the mother might use such an alternative approach. Be specific and point to possible problems that may arise in this application of behavioral methodology.

3 During the summer months, you find employment in a camp for mildly mentally impaired children. As a counselor you are asked to supervise a small group of children, as well as to look for ways to improve their attention to various camp activities that take place indoors (e.g., craft-making and sewing). You decide to explore the possibility of using a system of rewards (M&M candies) for “time on task.” You realize that the camp director will want evidence of the effectiveness of your intervention strategy as well as some assurance that it will work with other children in the camp. Therefore you are to

A Plan an intervention strategy based on reinforcement principles that has as its goal an increase in the time children spend on a camp activity.

B Explain what behavioral records you will need to keep and how you will determine whether your intervention has produced a change in the children’s behavior. You will need, for example, to specify exactly when and how you will measure behavior, as well as to justify your use of a particular design to carry out your “experiment.”

C Describe the argument you will use to convince the director that your intervention strategy (assuming that it works) will work with other, similar children.

4 A teacher asks your help in planning a behavioral intervention that will help manage the behavior of a problem child in his classroom. The child does not stay at her desk when asked to do so, does not remain quiet during “quiet times,” and exhibits other behaviors that disrupt the teaching environment. Explain specifically how a positive reinforcer, such as candy or small toys, might be used as part of a multiple-baseline across behaviors design to improve the child’s behavior.

Answer to Stretching Exercise

1 You may be inclined to agree with your friend. Personal examples are often more compelling than quantitative evidence. In evaluating these two studies, however, it is important to recognize that they represent two different approaches to doing research. The first study represents the nomothetic approach, which relies on the study of large groups and tends to use quantitative measures to describe the groups. The second study represents the idiographic approach, which involves the intensive study of individual cases and qualitative description. After recognizing these differences in the two approaches, careful examination of the findings indicates there is no need to choose between the two studies. The first study does indicate that slightly more than half of marriages end in divorce, but this means that slightly less than half of all marriages do not end in divorce. The second study indicates that even marriages that are at risk for divorce because of such factors as conflict and a family history of divorce do not necessarily end in divorce. The second study suggests that it may take additional effort to overcome these risk
factors. For example, the couple considering divorce when they entered therapy was willing to spend a year in therapy to work on their marriage. The findings of these two studies illustrate the general idea that nomothetic and idiographic research can complement rather than compete with each other.

2 Your friend’s second question is an example of a general question that students of psychology often ask (and should ask): What does all this research evidence have to do with me? The findings of these two studies provide potentially useful information for your friend as she considers her future. The first study tells us that divorce does occur frequently and that certain factors have been identified as indicators of when divorce is more likely to occur. The second study tells us that marriages can succeed even when these risk factors are present. This information can be useful because it provides evidence from systematic and controlled study that complements what we can learn from our own experience. Your friend will not be able to determine based on these findings whether she will, in fact, divorce should she choose to marry. More generally, the findings of psychological research cannot yet tell us the answer to Gordon Allport’s question of what any one person will do.

Answer to Challenge Question 1

A One source of bias in this case study was that the same individual served as therapist and as researcher with the commensurate problems of observer bias. A second source of bias is that the therapist based his conclusion solely on the self-reports of the patient.

B The successful treatment may have resulted from the relaxation technique alone; the use of the “secret word” in the face of anxiety; attention the patient received from the therapist; or even the high cost of the treatment.

C The major problem that arises from studying one individual is a potential lack of external validity.
CHAPTER TEN

Quasi-Experimental Designs and Program Evaluation

CHAPTER OUTLINE

OVERVIEW

TRUE EXPERIMENTS
Characteristics of True Experiments
Obstacles to Conducting True Experiments in Natural Settings
Threats to Internal Validity Controlled by True Experiments
Problems That Even True Experiments May Not Control

QUASI-EXPERIMENTS
The Nonequivalent Control Group Design
Nonequivalent Control Group Design: The Langer and Rodin Study
Threats to Internal Validity in the Nonequivalent Control Group Design
The Issue of External Validity
Interrupted Time-Series Designs
Time Series with Nonequivalent Control Group

PROGRAM EVALUATION

SUMMARY
Overview

In the most general sense, an experiment is a test; it is a procedure we use to find out something we don’t yet know. In this sense we experiment when we add new ingredients to a chili recipe in order to see whether they improve its taste. We experiment when we take a different route to our job in order to find a faster way to commute. These informal “experiments” are much different from the experiments typically carried out in psychological research. Experimental methods, unlike other research techniques such as observation and surveys, are viewed as the most efficient way to determine cause-effect relationships. But determining causation is not always easy, and in the last few chapters you were introduced to the complex task facing researchers who seek to understand a phenomenon by discovering its cause.

In this chapter we continue our discussion of experimental methods, but we focus on experiments conducted in natural settings such as hospitals, schools, and businesses. Investigators may conduct research in natural settings in order to test the external validity of a lab-based finding or to evaluate the effect of a treatment designed to improve the conditions under which people live and work. The task of drawing cause-effect conclusions in these settings often becomes even more difficult, and new problems arise when an investigator leaves the laboratory to do experiments in natural settings.

Many psychologists have research interests that lead them out of the lab and into “the field.” Researchers in the lab frequently focus on basic research with the goals of understanding a phenomenon and theory-testing. In contrast, psychologists who conduct applied research in natural settings are more likely to have practical goals of improving real-life conditions. When conducting their research in natural settings, however, researchers often lose the high degree of scientific control found in lab-based experiments. Experiments in “the real world” can be messy. For example, participants who are randomly assigned to conditions of an independent variable in a workplace may leave the experiment due to job transfers, or changes in company procedures can disrupt ways in which a dependent variable is recorded during the experiment. An important part of evaluating research conducted in natural settings is to examine the extent to which experimental control was maintained throughout the study.

The high degree of control present in laboratory research enhances the internal validity of the research (the ability to make causal inferences), but this advantage comes at a price: the “artificial” lab setting often decreases the external validity of the findings (the ability to generalize the findings to people, settings, and conditions beyond that of the experiment). After a phenomenon has been investigated in lab experiments, researchers may seek to establish the external validity of the findings by conducting experiments in natural settings. The greater external validity of applied research can be very important, particularly when large-scale social changes are being considered.

Experiments in natural settings can have far-reaching impact on communities and society. For example, the Head Start program for disadvantaged children and the Sesame Street television show were social experiments designed to improve the education of hundreds of thousands of children (see Figure 10.1). While lab-based
experiments are likely to impact only the few researchers and participants involved, even small experiments in natural settings such as schools, businesses, and hospitals can have a large, immediate impact on the people involved. Research designed to discover whether a treatment in a natural setting is effective impacts decisions about whether additional money and time should be devoted to implementing the treatment. One goal of *program evaluation* is to determine the effectiveness of changes made by institutions, government agencies, and other organizations.

In this chapter we describe obstacles to doing experiments in natural settings, and we discuss ways of overcoming these obstacles so that true experiments are done whenever possible. Nevertheless, true experiments are sometimes not feasible outside the laboratory. In these cases, experimental procedures that only approximate the conditions of laboratory experiments must be considered. We discuss several of these *quasi-experimental* techniques. We conclude by providing a brief introduction to the logic, procedures, and limitations of program evaluation.

True Experiments

Characteristics of True Experiments

- In true experiments, researchers manipulate an independent variable with treatment and comparison condition(s) and exercise a high degree of control (especially through random assignment to conditions).
Although many everyday activities (such as altering the ingredients of a recipe) might be called experiments, we would not consider them “true” experiments in the sense in which we have discussed experimentation in this textbook. Analogously, many “social experiments” carried out by the government, company officials, or educational administrators are also not true experiments. A true experiment is one that leads to an unambiguous outcome regarding what caused an event.

True experiments exhibit three important characteristics:

1. In a true experiment some type of intervention or treatment is implemented.
2. True experiments are marked by the high degree of control that an experimenter has over the arrangement of experimental conditions, assignment of participants, systematic manipulation of independent variables, and choice of dependent variables. The ability to assign participants randomly to experimental conditions is often seen as the most critical defining characteristic of the true experiment (West & Thoemmes, 2010).
3. Finally, in true experiments the experimenter establishes a proper comparison to evaluate the effectiveness of a treatment. In the simplest of experimental situations, this comparison is one between two comparable groups that are treated exactly alike except for the variable of interest.

When the conditions of a true experiment are met, any differences in a dependent variable that arise can logically be attributed to the differences between levels of the independent variable. There are differences, however, between true experiments done in natural settings and experiments done in a laboratory.

Obstacles to Conducting True Experiments in Natural Settings

- Researchers may experience difficulty obtaining permission to conduct true experiments in natural settings and gaining access to participants.
- Although random assignment is perceived by some as unfair because it may deprive individuals of a new treatment, it is still the best way and fairest way to determine if a new treatment is effective.

Experimental research is an effective tool for solving problems and answering practical questions. Nevertheless, two major obstacles often arise when we try to carry out experiments in natural settings. The first problem is obtaining permission to do the research from individuals in positions of authority. Unless they believe that the research will be useful, school board presidents and government and business leaders are unlikely to support research financially or otherwise. The second, and often more pressing, obstacle to doing experiments in natural settings is the problem of access to participants. This problem can prove especially troublesome if participants are to be randomly assigned to either a treatment group or a comparison group.

Sometimes random assignment can be used when resources are limited and a treatment cannot be provided to all who desire it. This situation occurred in Oregon in 2008, when the state was able to expand Medicaid insurance coverage to an additional 10,000 low-income residents (Klein, 2013). This good news
was tempered by the bad news: 90,000 people were eligible for Medicaid. A state lottery was established to randomly select the people who would gain Medicaid coverage, and individuals were randomly assignment to conditions: Medicaid health coverage and control group (no coverage). Results from this experiment indicate that Medicaid coverage increased the use of health care services, improved diabetes detection and management, lowered rates of depression, and reduced financial strain for those receiving Medicaid in the first two years of the program (Baicker et al., 2013).

Random assignment to conditions appears unfair at first—after all, random assignment requires that a potentially beneficial treatment, such as Medicaid coverage, be withheld from some participants. The fairness of random assignment is also an issue in smaller-scale treatment studies. Suppose that researchers want to test a new treatment designed to help students who struggle with alcohol abuse at a university. Your knowledge of research methods tells you the new treatment should be tested against the old treatment (or some comparison condition) to determine its effectiveness, and that random assignment to conditions should be used to create comparable groups of students. But random assignment doesn’t seem fair. Students assigned to the control condition would potentially miss the benefits of the new treatment. Wouldn’t it be more fair to provide the new (improved?) treatment to every student in the study?

Let’s take a look at the fairness of random assignment. If treatment providers already know the new treatment is more effective than previous treatments, there’s no reason to conduct the research and the new treatment should be given to everyone. However, if we don’t know whether the new treatment is effective or better, a true experiment is needed. Random assignment to conditions may be the fairest method for assigning students to the different groups. After all, the new treatment may be less effective than the old treatment.

In a study that took this approach, students seeking care at the student health center at a large university completed a brief questionnaire about their health history and behaviors (Schaus et al., 2010). Students were eligible for the study if they reported high-risk drinking using the “5/4 alcohol screening question.” For men, high-risk drinking was defined as five or more drinks containing alcohol in a row on at least one occasion in the previous two weeks. The same criterion applied to women, except four or more drinks defined high-risk drinking. High-risk students ($N = 363$) who agreed to be in the study were randomly assigned to one of two conditions. In the treatment condition, students received two brief motivational intervention (BMI) sessions that combined cognitive-behavioral skill training with motivational strategies and feedback. These students also received a brochure describing alcohol prevention. Students in the control condition received only the brochure. All participants were asked to complete questionnaires, alcohol-use diaries, and blood-alcohol testing over the course of the one-year study. Results indicated that, on average, students who received the treatment demonstrated decreased alcohol consumption and high-risk drinking, and less alcohol-related harm than students in the control condition.

An additional aspect of this study is worth mentioning. Of the more than 2,000 students who were eligible for the study based on their response to the
5/4 alcohol screening question, 70% did not agree to be contacted and be randomly assigned to one of the two conditions. In clinical trials involving tests of new medical treatments, it may be very difficult to get patients to agree to random assignment. People seeking treatment often don’t want to end up in a control group.

When there is more demand for a treatment than an agency can meet, people waiting to receive treatment can become a waiting-list control group. These people complete the study measures while waiting for treatment. It’s essential, however, that people are assigned randomly to either the treatment or waiting-list control group, rather than to assign people to treatment on a first-come, first-served basis. People who show up first likely differ on important dimensions from people who arrive last (e.g., more eager for treatment). These individual differences become alternative explanations for any observed differences between treatment and comparison groups. Random assignment is needed to distribute these characteristics across the groups in an unbiased way.

Another method for offering a treatment to all participants while maintaining comparable groups through random assignment is to alternate treatments. For example, fourth graders could be tested to determine whether the opportunity to use electronic tablets during learning improves students’ understanding of material. The treatment (tablets) could be applied to language arts and science instruction, but students would be randomly assigned to use tablets for only one of the two subjects. Students who use tablets during language arts would serve as the control group for students who use tablets during science, and vice versa. After the experiment is over, students would be given the opportunity to use tablets for the subject matter they didn’t previously see. In that way, all students would receive the potentially beneficial treatment for both language arts and science.

There will always be circumstances in which random assignment simply cannot be used. In these situations, researchers turn to quasi-experimental designs to answer their research questions. The logic and procedures for these quasi-experimental designs will be described later in this chapter.

Threats to Internal Validity Controlled by True Experiments

- Threats to internal validity are confounds that serve as plausible alternative explanations for a research finding.
- Major classes of threats to internal validity include history, maturation, testing, instrumentation, regression, subject attrition, selection, and additive effects with selection.

We’ve emphasized that control techniques allow scientists to form a causal inference about the effect of an independent variable on the dependent variable by ruling out alternative explanations for an experiment’s outcome. These alternative explanations, called confoundings (or confounds) in previous chapters, threaten the internal validity of a study. Because researchers often are less able to use control techniques in natural settings, experts in the area of quasi-experimental design have identified the major types of confounds that can
occur (Shadish, Cook, & Campbell, 2002; West, 2010). There are eight classes of confounds called threats to internal validity. You are already familiar with some of these; others will be new. After reviewing these major threats to internal validity, we will examine the extent to which various quasi-experimental procedures attempt to control them.

History The occurrence of an event other than the treatment can threaten internal validity if it produces changes in the research participants’ behavior. A true experiment requires that participants in the experimental group and in the control group be treated the same (have the same history of experiences while in the experiment) except for the treatment. In the laboratory, this is usually accomplished by balancing or holding conditions constant. When doing experiments in natural settings, however, the researcher may not be able to maintain a high degree of control, so confounding due to history can threaten internal validity. For example, suppose a local police force tests a new “neighborhood watch” program to reduce the incidence of burglaries and public disturbances in a community. Police records could be used to assess the effectiveness of the program. Without an appropriate comparison group, however, history would threaten the internal validity of the study if events other than the treatment (the neighborhood watch program) occurred that might reduce crime in the community. For instance, suppose a burglary of a prominent business takes place and receives widespread media coverage. The neighborhood’s history, now including the news coverage, would confound the treatment and threaten the internal validity of the study.

Maturation Participants in an experiment necessarily change as a function of time. They grow older, become more experienced, and so forth. Change associated with the passage of time per se is called maturation. For example, suppose a school psychologist tests whether a school breakfast program for homeless children who attend the school influences their academic performance over the school year. Without a proper comparison, a researcher might attribute the changes in children’s performance between the beginning and the end of the school year to the effect of the breakfast program when, in reality, the changes were simply due to a maturation threat to validity. That is, the children’s learning may have improved simply because their cognitive abilities increased as they aged.

Testing Taking a test generally has an effect on subsequent testing. Consider, for example, the fact that many students often improve from the initial test in a course to the second test. During the first test the students gain familiarity with the testing procedure and with the instructor’s expectations. This familiarity then affects their performance on the second test. Likewise, in the context of a psychology experiment in which more than one test is given (e.g., in a pretest-posttest design), testing is a threat to internal validity if the effect of a treatment cannot be separated from the effect of testing.

Instrumentation Changes over time can take place not only in the participants of an experiment (e.g., maturation or increased familiarity with testing), but also in the instruments used to measure participants’ performance. This is most
clearly a possibility when human observers are used to assess behavior. For instance, observer bias can result from fatigue, expectations, and other characteristics of observers. Unless controlled for, these changes in the observers represent an instrumentation threat to internal validity by providing alternative explanations for differences in behavior between one observation period and another. Mechanical instruments used to measure behavior may change with repeated use, and government regulations may change the ways in which observations are made. For example, researchers who examine the effects of educational programs and services on students’ academic performance often use results from standardized testing as their dependent measure. When new standardized tests associated with the Common Core State Standards are introduced in 2014 (www.corestandards.org), researchers who study students’ performance over time will see changes simply because the standardized tests have changed.

Regression Statistical regression is always a problem when individuals have been selected to participate in an experiment because of their “extreme” scores. Extreme scores on one test are not likely to be as extreme on a second test. In other words, a very, very bad performance, or a very, very good performance (both of which we have all experienced), is likely to be followed by a performance that is not quite so bad, or not quite so good, respectively. Consider, for instance, your best ever performance on a classroom examination. What did it take to “nail” this test? It took, no doubt, a lot of hard work. But it is also likely that some luck was involved. Everything has to work just right to produce an extremely good performance. If we are talking about an exam, then it is likely that the material tested was that which you just happened to study the hardest, or the test format was one you particularly like, or it came at a time when you were feeling particularly confident, or all of these and more. Particularly good performances are “extreme” because they are inflated (over our usual or typical performance) by chance. Similarly, an especially bad test performance is likely to have occurred because of some bad luck. When tested again (following either a very good or a very bad performance), it is simply not likely that chance factors will “gang up” the same way to give us that super score or that very poor score. We will likely see a performance closer to the average of our overall scores. This phenomenon frequently is called regression to (toward) the mean (see Box 10.1). Statistical regression is more likely when a test or measure is unreliable. When an unreliable test is used, we can expect scores to be inconsistent over time.

Now, consider an attempt to raise the academic performance of a group of college students who performed very poorly during their first semester of college (the “pretest”). Participants are selected because of their extreme performance (in this case, extremely poor performance). Let us assume that a treatment (e.g., a 10-hour study skills workshop) is then applied. Statistical regression is a threat to internal validity because we would expect these students to perform slightly better after the second semester (the “posttest”) without any treatment simply due to statistical regression. An unknowing researcher may mistakenly confuse this “regression effect” with a “treatment effect.”
Subject Attrition As discussed in Chapter 6, a threat to internal validity occurs when participants are lost from an experiment, for example, when participants drop out of the research project. The subject attrition threat to internal validity rests on the assumption that the loss of participants changes the nature of the group that was established prior to the treatment—for example, by destroying the equivalence of groups established through random assignment. This might occur, for instance, if an experimental treatment is very unpleasant and causes some experimental participants to become frustrated and to drop out of the experiment. Participants who are left in the experimental group will differ from those who dropped out (and from those in a control group), possibly because they wanted the treatment more.

Selection When, from the outset of a study, differences exist between the characteristics of individuals in one group and those in another group in the experiment, there is a threat to internal validity due to selection. That is, the people who are in the treatment group may differ from people in the comparison group in many ways other than their group assignment. In the laboratory, this threat to internal validity is generally handled by balancing participant characteristics through

BOX 10.1

EXPLAINING THE SPORTS ILLUSTRATED JINX

A well-known example of regression toward the mean is found in the “Sports Illustrated Jinx”—the claim that when an athlete is featured on the cover of *Sports Illustrated* (SI), he or she is jinxed to perform worse in subsequent competition. Does the magazine cast a magic spell over athletes to jinx their performance?

Humans have the unique capacity to form causal explanations for events. Often, however, this tendency leads to biased thinking (Kahneman, 2011). What are some of the causes people have identified to explain the *Sports Illustrated* jinx?

- Raised expectations after the SI cover place too much pressure on the athlete.
- The athlete becomes overconfident and cocky after appearing on the cover.
- Opposing athletes work especially hard against the featured athlete.

Although these causal explanations seem plausible, none is needed to explain poorer performance following an SI cover because the “jinx” is explained by regression toward the mean.

Here’s the explanation: To appear on the cover of *Sports Illustrated*, an athlete must have performed exceptionally well. Exceptional performance (in any area) is a combination of ability and good luck. Statistically, that same luck is not likely to occur again (luck, by definition, is random), so the next performance will probably not be as exceptional. It will be closer to average—another way of saying performance will regress toward the mean. The same statistical reasoning can be applied to understand why it’s difficult for teams to repeat a championship from one season to the next. Success in a championship year involves good luck that isn’t likely to be repeated in the subsequent year.

To test the notion of regression to the mean, you might try searching sports databases for athletes whose exceptional performances were not splashed on an SI cover (a comparison group). You’ll see their subsequent performances were closer to average too. It’s hard for people to accept statistical explanations, nor do we like to refer to luck, good or bad, as a reason for performance. But when it comes to phenomena such as the “Sports Illustrated jinx,” regression toward the mean is the only explanation needed.
random assignment. Researchers who conduct studies in natural settings often are not able to randomly assign participants to treatment and comparison conditions; hence, selection becomes a possible threat to internal validity.

Additive Effects with Selection Individual threats to internal validity such as history and maturation can be a source of additional concern because they can combine with the selection threat to internal validity. Specifically, when comparable groups are not formed by random assignment, there are possible problems due to additive effects of (1) selection and maturation, (2) selection and history, and (3) selection and instrumentation. For example, additive effects of selection and maturation could occur if first-year students in college who served as an experimental group were compared with sophomores who served as a control group. Changes in students that occur during their first year (as students gain familiarity with the college environment) might be presumed to be greater than the changes that occur during the sophomore year. These differences in maturation rates might explain any observed differences between the experimental and control groups, rather than the differences being due to the experimental intervention.

An additive effect of selection and history results when events occurring in time have a different effect on one group of participants than on another. This is particularly a problem when intact groups are compared. Perhaps due to events that are peculiar to one group’s situation, an event may have more of an impact on that group than on another. Consider, for example, research involving an investigation of the effectiveness of an AIDS awareness campaign involving two college campuses (one treatment and one control). Nationwide media attention to AIDS might reasonably be assumed to affect students on both campuses equally. However, if a student with AIDS died at one college during the study and the story was featured in the college newspaper, we would assume that research participants at this student’s college would be affected differently compared to those at the other. In terms of assessing the effect of an AIDS awareness campaign, this situation would represent an additive effect of selection and history.

Finally, an additive effect of selection and instrumentation might occur if a test instrument is relatively more sensitive to changes in one group’s performance than to changes in another’s. This occurs, for instance, when ceiling or floor effects are present. Such is the case when a group scores initially so low on an instrument (floor effect), that any further drop in scores cannot be reliably measured, or so high (ceiling effect) that any more gain cannot be assessed. As you can imagine, a threat to internal validity would be present if an experimental group showed relatively no change (due to floor or ceiling effects), while a control group changed reliably because its mean performance was initially near the middle of the measurement scale.

One of the great advantages of true experiments is that they control for all these threats to internal validity. As Campbell (1969) emphasizes, true experiments should be conducted when possible, but if they are not feasible, quasi-experiments should be conducted. “We must do the best we can with what is available to us” (p. 411). Quasi-experiments represent the best available compromise between the general aim of gaining valid knowledge regarding the effectiveness of a treatment and the realization that true experiments are not always possible.
Problems That Even True Experiments May Not Control

- Threats to internal validity that can occur in any study include contamination, experimenter expectancy effects, and novelty effects.
- Contamination occurs when information about the experiment is communicated between groups of participants, which may lead to resentment, rivalry, or diffusion of treatment.
- Experimenter expectancy effects occur when researchers’ biases and expectancies unintentionally influence the results of a study.
- Novelty effects, including Hawthorne effects, occur when people’s behavior changes simply because an innovation (e.g., a treatment) produces excitement, energy, and enthusiasm.
- Threats to external validity occur when treatment effects may not be generalized beyond the particular people, setting, treatment, and outcome of the experiment.

Before considering specific quasi-experimental procedures, we should point out that even true experiments may not control for all possible threats to the interpretation of an experimental outcome. Although major threats to internal validity are eliminated by the true experiment, investigators working in natural settings must guard against some additional threats: contamination, experimenter expectancy effects, and novelty effects. Contamination occurs when there is communication of information about the experiment between groups of participants. Several unwanted effects can occur when groups communicate information about an experiment (Cook & Campbell, 1979). Resentment is possible when individuals in a control condition learn they are not receiving a desirable treatment. For example, in an experiment testing performance incentives in a workplace, individuals who resent not receiving the treatment may retaliate by lowering their productivity, making the experimental condition look better than it truly may be. A second contamination effect may be rivalry. Rather than responding with poorer performance, individuals in a control condition may feel motivated to work harder so they don’t look bad compared to individuals in a treatment group. Finally, contamination may lead to diffusion of treatments. If treatment information is communicated between groups (e.g., during lunch breaks), individuals in a control condition may apply the information to themselves to imitate those receiving the treatment. For example, new scheduling procedures may be tested at a hospital to determine whether the procedures enhance patient satisfaction. If diffusion of treatment occurs, staff members in a control condition might learn about the procedures and apply them as they schedule patients. This would reduce any differences in patient satisfaction between treatment and control groups, and threaten the internal validity of the experiment.

True experiments can also be affected by threats due to experimenter expectancy effects that occur when an experimenter unintentionally influences the results. Observer bias occurs when researchers’ biases and expectancies lead to systematic errors in observing, identifying, recording, and interpreting behavior. (Various ways to control observer or experimenter effects were outlined in Chapter 4 and Chapter 6, e.g., using a double-blind procedure.)
Novelty effects can occur when an innovation, such as an experimental treatment, is introduced (Shadish et al., 2002). For example, if little in the way of change or innovation has occurred for some time at a work site, employees may become excited or energized by the novelty (or newness) of their work environment when an intervention is introduced. Employees’ newfound enthusiasm, rather than the intervention itself, may account for the “success” of the intervention. The opposite of a novelty effect can occur as a disruption effect, in which an innovation, perhaps with new work procedures, disrupts employees’ work to such an extent that they cannot maintain their typical effectiveness.

One specific novelty effect has been labeled the Hawthorne effect. This refers to changes in people’s behavior brought about by the interest that “significant others” show in them. The effect was named after events occurring at the Hawthorne plant of the Western Electric Company in Cicero, Illinois, near Chicago, between 1924 and 1932 (Roethlisberger, 1977). Studies were conducted to examine the relationship between productivity and conditions of the workplace. In one experiment, the amount of lighting in the plant was varied and worker performance was examined. Results revealed that both experimental and control groups increased their productivity during the study. Although there is some controversy surrounding the exact factors responsible for this effect (e.g., Parsons, 1974), a Hawthorne effect generally refers to a change in behavior that results from participants’ awareness that someone is interested in them.

As one example of the Hawthorne effect, consider a study in which prisoners are chosen to participate in research examining the relationship between changes in prison-cell conditions and attitudes toward prison life (see Figure 10.2).

FIGURE 10.2 Research investigating methods for improving prison life may be subject to Hawthorne effects.
If positive changes in prisoners’ attitudes are obtained, the results could be due to the actual changes in cell conditions that were made, or they could be due to an increase in morale because prisoners saw the prison administration as expressing concern for them. Researchers working in natural settings must be conscious of the fact that changes in participants’ behavior may be partially due to their awareness that others are interested in them. Thus, you can see that a Hawthorne effect represents a specific kind of reactivity (i.e., an awareness that one is being observed), which we discussed in previous chapters (especially Chapter 4).

In addition to problems resulting from threats to internal validity, true experiments can be weakened by threats to external validity. External validity refers to our ability to generalize a study’s findings to persons, settings, and times beyond those used in the study. External validity is enhanced when the sample of persons, settings, and times in a particular study is representative of those to which we seek to generalize. Although random sampling is the best way to achieve representativeness, researchers rarely use random sampling in experiments (Shadish et al., 2002). Therefore, investigators must be aware of ways in which the effect of an independent variable may depend on the particular sample of participants, the setting, or the time of the study. For example, suppose a difference between a treatment group and a control group is observed with research volunteers in an inner-city school in the winter. The external validity of the finding can be questioned. Would the same finding be observed when nonvolunteers are tested in a suburban school in the spring of the year?

The best test of external validity is replication. Thus, questions of external validity are best answered by repeating the experiment with different types of participants, in different settings, with different treatment methods, and at different times. Occasionally, “partial replications” can be built into an experiment. In order to test whether findings generalize to different groups of people, more than one group of people may be selected to participate. For example, a cognitive-behavioral treatment may be tested with individuals diagnosed as depressed and a group of individuals with an anxiety diagnosis to determine if the effect of treatment generalizes across these two groups. Similarly, the treatment may be tested at more than one clinic to see if the treatment effect generalizes across settings. Different therapists may be employed to determine whether findings generalize across therapists. You may see that questions of external validity can be numerous, making replication an important goal of research methods in psychology.

QUASI-EXPERIMENTS

- Quasi-experiments provide an important alternative when true experiments are not possible.
- Quasi-experiments lack the degree of control found in true experiments; most notably, quasi-experiments typically lack random assignment.
- Researchers must seek additional evidence to eliminate threats to internal validity when they do quasi-experiments rather than true experiments.
- The one-group pretest-posttest design is called a pre-experimental design or a bad experiment because it has so little internal validity.
A dictionary will tell you that one definition of the prefix *quasi-* is “resembling.” Quasi-experiments involve procedures that resemble those of true experiments. Generally speaking, **quasi-experiments** include some type of intervention or treatment and a comparison, but they lack the degree of control found in true experiments. Just as randomization is the hallmark of true experiments, so lack of randomization is the hallmark of quasi-experiments.

Researchers turn to quasi-experiments when they want to know whether a treatment is effective, but a true experiment isn’t possible. Some knowledge is better than none, but can we trust the knowledge that comes from a quasi-experiment? To answer this question, researchers turn to the list of possible threats to internal validity we reviewed earlier in this chapter. By examining the evidence available from the quasi-experiment and applying a logical analysis of the situation, an investigator seeks to rule out the various threats as plausible explanations for the study’s findings. For example, the researcher may analyze a situation for possible historical events during the time of the study that could explain participants’ responses on the measures. When researchers can show that the history threat is unlikely, they can make a stronger argument for the internal validity of their research findings. Thus, researchers act as detectives when they recognize the shortcomings of their quasi-experiment and look for evidence to overcome these shortcomings.

In some cases, there isn’t sufficient evidence to decide whether a threat to internal validity can be eliminated using logical analysis of the situation or analysis of supplementary data. When this occurs, the investigators must acknowledge that the quasi-experiment doesn’t offer conclusive evidence for the effectiveness of a treatment and alternative explanations exist for the study’s findings. Because of the problems of interpretation that result from quasi-experimental procedures, researchers should make every effort to approximate the conditions of a true experiment.

Perhaps the most serious limitation researchers face in doing experiments in natural settings is that they are frequently unable to assign participants randomly to conditions. This occurs, for instance, when an intact group is singled out for treatment and when administrative decisions or practical considerations prevent randomly assigning participants. For example, children in one classroom or school and workers at a particular plant represent intact groups that might receive a treatment or intervention. If we assume that behavior of a group is measured both before and after treatment, such an “experiment” can be described as follows:

\[
O_1 \times X \times O_2
\]

where \(O_1\) refers to the first observation of a group, or pretest, \(X\) indicates a treatment, and \(O_2\) refers to the second observation, or posttest.

This **one-group pretest-posttest** design represents a pre-experimental design or, more simply, may be called a bad experiment. Any obtained difference between the pretest and posttest scores could be due to the treatment or to any of several threats to internal validity, including history, maturation, testing, and instrumentation threats (as well as experimenter expectancy effects and novelty...
effects). Researchers cannot make any conclusions about the effectiveness of a treatment in this bad experiment. Fortunately, there are quasi-experiments that improve upon this pre-experimental design.

The Nonequivalent Control Group Design

- In the nonequivalent control group design, a treatment group and a comparison group are compared using pretest and posttest measures.
- If the two groups are similar in their pretest scores prior to treatment but differ in their posttest scores following treatment, researchers can more confidently make a claim about the effect of treatment.
- Threats to internal validity due to history, maturation, testing, instrumentation, and regression can be controlled in a nonequivalent control group design.

The one-group pretest-posttest design can be modified to create a quasi-experimental design with greatly superior internal validity if two conditions are met: (1) there exists a group “like” the treatment group that can serve as a comparison group, and (2) there is an opportunity to obtain pretest and posttest measures from individuals in both the treatment and the comparison groups. Campbell and Stanley (1966) call a quasi-experimental procedure that meets these two conditions a nonequivalent control group design. Because a comparison group is selected on bases other than random assignment, we cannot assume that individuals in the treatment and control groups are equivalent on all important characteristics (i.e., a selection threat arises). Therefore, it is essential

Key Concept

In this exercise we ask you to consider possible threats to internal validity in this brief description of a one-group pretest-posttest design.

A psychologist interested in the effect of a new therapy for depression recruited a sample of 20 individuals who sought relief from their depression. At the beginning of the study he asked all participants to complete a questionnaire about their symptoms of depression. The mean depression score for the sample was 42.0 (the highest possible score is 63.0), indicating severe depressive symptoms. (Individuals who are not depressed typically score in the 0 to 10 range on this measure.) During the next 16 weeks the psychologist treated participants in the study with the new treatment. At the end of the treatment the participants completed the depression questionnaire again. The mean score for the posttest was 12.0, indicating that, on average, participants’ depression symptoms were dramatically reduced and indicated only mild depression. The psychologist concluded that the treatment was effective; that is, the treatment caused their depressive symptoms to improve.

Cause-and-effect statements, such as the one made by this psychologist, are essentially impossible to make when the one-group pretest-posttest design is used. To understand why this is true, we ask you to think of potential threats to internal validity in this study.

1. How might a history effect threaten the internal validity of this study?
2. Explain how maturation likely plays a role in this study.
3. Are testing and instrumentation threats likely in this study?
4. Explain how statistical regression might influence the interpretation of these findings.
that a pretest be given to both groups to assess their similarity on the dependent measure. A nonequivalent control group design can be outlined as follows:

\[
\begin{array}{c}
O_1 \\
\hline
X
\end{array}
\begin{array}{c}
O_2 \\
\hline
O_1
\end{array}
\]

The dashed line indicates that the treatment and comparison groups were not formed by assigning participants randomly to conditions.

By adding a comparison group, researchers can control threats to internal validity due to history, maturation, testing, instrumentation, and regression. A brief review of the logic of experimental design will help show why this occurs. We wish to begin an experiment with two similar groups; then one group receives the treatment and the other does not. If the two groups’ posttest scores differ following treatment, we first must rule out alternative explanations before we can claim that treatment caused the difference. If the groups are truly comparable, and both groups have similar experiences (except for the treatment), then we can assume that history, maturation, testing, instrumentation, and regression effects occur to both groups equally. Thus, we may assume that both groups change naturally at the same rate (maturation), experience the same effect of multiple testing, or are exposed to the same external events (history). If these effects are experienced in the same way by both groups, they cannot possibly be used to account for group differences on posttest measures. Therefore, they no longer are threats to internal validity. Thus, researchers gain a tremendous advantage in their ability to make causal claims simply by adding a comparison group. These causal claims, however, depend critically on forming comparable groups at the start of the study, and ensuring that the groups then have comparable experiences, except for the treatment. Because this is difficult to realize in practice, as we’ll see, threats to internal validity due to additive effects with selection typically are not eliminated in this design.

As an example of a study that used a nonequivalent control group design, consider the effect of taking a research methods course as a “treatment” (VanderStoep & Shaughnessy, 1997). Students enrolled in a research methods course were compared to students in a developmental psychology course in their ability to think critically about everyday life events. The students scored similarly in their reasoning ability on a pretest at the beginning of their course, but at the end of the semester, students in the research methods course showed greater improvement than students in the control group. With that bit of encouraging news in mind, let us now examine in detail another study using a nonequivalent control group design. This will give us the opportunity to review both the specific strengths and limitations of this quasi-experimental procedure.

Nonequivalent Control Group Design:

The Langer and Rodin Study

- Quasi-experiments often assess the overall effectiveness of a treatment that has many components; follow-up research may then determine which components are critical for achieving the treatment effect.
Langer and Rodin (1976) observed that although physical care for elderly persons in nursing homes is often adequate, many of these care facilities provide little opportunity for residents to make daily personal decisions (see Figure 10.3). They hypothesized that the lack of opportunity to make even simple choices contributes to psychological and even physical debilitation sometimes seen in the elderly. To test their hypothesis, they conducted a quasi-experiment in a Connecticut nursing home using a nonequivalent control group design.

The independent variable was the type of responsibility given to two groups of residents. In the responsibility-induced condition, residents were informed of the many decisions they needed to make regarding how their rooms were arranged, visits, movie selection, and so forth. These residents were also given a small plant as a gift (and could choose whether to accept it), and told to take care of it as they wished. The second group of residents, the comparison group, also was called together for a meeting, but were told of the staff’s responsibility to make decisions for them. These residents were also given a plant, whether they wanted it or not, and were told the staff would take care of it.

The nursing home residents were not randomly assigned to the two conditions; instead, the two sets of responsibility instructions were given to residents on two different floors of the nursing home. Langer and Rodin (1976) noted that...
the floors were chosen “because of similarity in the residents’ physical and psychological health and prior socioeconomic status” (p. 193). Questionnaires were given to residents 1 week before (pretest) and 3 weeks after (posttest) the responsibility instructions. Items asked about residents’ feelings of control, happiness, and activity levels. Staff members on each floor also rated the residents before and after the treatment on traits such as alertness, sociability, and activity. Finally, the investigators included a clever posttest measure of social interest by holding a contest that asked residents to guess the number of jelly beans in a large jar. If they wished to enter, residents wrote their name and estimate on a slip of paper.

The results indicated that residents in the responsibility-induced group were generally happier, more active, and more alert following the treatment than were residents in the comparison group, and although 10 residents in the treatment group entered the jelly bean contest, only 1 resident from the comparison group entered! Based on their findings, Langer and Rodin suggested that some of the negative effects of aging can be reduced or reversed by providing elderly individuals opportunities to make personal decisions.

Before turning to the specific limitations associated with the nonequivalent control group design, another aspect of the Langer and Rodin study deserves mention. The treatment in their study involved several components: residents in the treatment group were encouraged to make many different decisions (e.g., movies, rooms, activities), and they were given a plant to care for. The experiment evaluated, however, the overall treatment “package,” not the individual components. We don’t know which, if any, of the components worked, or whether all are needed, or whether one component is more critical than others.

Treatments in natural settings often have many components. For example, a treatment “package” for post-traumatic stress disorder (PTSD) may include informational brochures, individual sessions with a health care professional, support group meetings, and yoga. The initial goal of many studies is to assess the overall effect of these components taken together. If a treatment package is shown to be effective, subsequent research may seek to identify which components produce the beneficial outcome. Identifying the critical components allows providers to reduce the cost of treatment by dropping components that do not contribute to a positive outcome. In addition to practical considerations, however, the development of psychological theories plays a role when researchers test predictions about the treatment based on a theory about behavior. When you next read or hear about research showing the beneficial effect of a treatment, look carefully to see if a treatment involved multiple components, and consider what additional research could be conducted to reveal the specific components needed to produce the positive treatment effect.

Threats to Internal Validity in the Nonequivalent Control Group Design

- To interpret the findings in quasi-experimental designs, researchers examine the study to determine if any threats to internal validity are present.
PART IV: Applied Research

The threats to internal validity that must be considered when using the nonequivalent control group design include additive effects with selection, differential regression, observer bias, contamination, and novelty effects.

Although groups may be comparable on a pretest measure, this does not ensure that the groups are comparable in all possible ways that are relevant to the outcome of the study.

According to Cook and Campbell (1979), the nonequivalent control group design generally controls for all major classes of potential threats to internal validity except those due to additive effects of (1) selection and maturation, (2) selection and history, (3) selection and instrumentation, and (4) those due to differential statistical regression (i.e., regression toward the mean in one group but not another). We will explore how each of these potential threats to validity might pose problems for Langer and Rodin’s interpretation of their findings. We will then explain how Langer and Rodin offered both logical argument and empirical evidence to refute the possible threats to the internal validity of their study. We will also examine how experimenter bias and problems of contamination were controlled. Finally, we will comment briefly on challenges of establishing external validity that are inherent in the nonequivalent control group design.

An important initial finding in Langer and Rodin’s study was that the residents in the two groups did not differ significantly on the pretest measures. It would not have been surprising to find a difference between the two groups before the treatment was introduced because the residents were not randomly assigned to conditions. Even when pretest scores show no difference between groups, however, we cannot assume that the groups are “equivalent” (Campbell & Stanley, 1966). We will explain why we cannot conclude that the groups are equivalent in the discussion that follows.

Selection-Maturation Effect

A maturation effect refers to the rate of naturally occurring change in a group. An additive effect of selection and maturation occurs when individuals in one group change at a different rate than individuals in another group (Shadish et al., 2002). For example, individuals in one group may grow more experienced, more tired, more bored, or less healthy at a faster rate than individuals in another group. A selection-maturation effect is more likely to threaten internal validity when individuals seek treatment in a research study, and when the comparison group is from a different population than the treatment group (Campbell & Stanley, 1966).

The possibility of a selection-maturation effect is one reason we cannot conclude that groups are equivalent even when pretest scores are similar, on average, for the treatment and comparison groups. The natural rate of change for two groups might differ (meaning the two groups are not from the same population, or not equivalent), but the pretest measure could have been given when the two groups happened to be at about the same point. A researcher cannot possibly know a group’s maturation rate simply based on a single pretest score. This problem is illustrated in Figure 10.4. Suppose the true rate of change is greater for Group A than for Group B (depicted using lines with different
slopes), but when the pretest is given, the two groups happen to be about the same. The researcher would falsely conclude the two groups are equivalent, when, in fact, they differ in their natural rate of change. Furthermore, the posttest scores for the dependent variable indicate the two groups differ simply because the maturation rates differ. With only the two measures, pretest and posttest, the researcher in this situation would likely conclude, incorrectly, that the treatment produced the difference between the two groups at posttest.

It’s also important to remember that even if groups are comparable on a pretest measure or a set of measures at the start of a study, the groups may differ in ways that were not assessed. These differences may be relevant to individuals’ behavior in the quasi-experiment and serve as alternative explanations for a study’s outcome (i.e., a selection threat to internal validity).

Is there reason to suspect a selection-maturation effect in the Langer and Rodin study? Is it possible residents on the treatment floor changed naturally at a different rate than residents on the comparison floor? Several pieces of evidence suggest this is unlikely. First, the procedure the nursing home followed to assign residents to rooms was basically random. It would certainly be a problem if residents were assigned to a floor because they required different levels of nursing care (i.e., possibly indicating different rates of aging), but this wasn’t the case in the study. Second, Langer and Rodin randomly assigned the two floors to the treatment or comparison condition, making this a closer approximation to a true experiment. The group in the responsibility-induced condition didn’t seek this special treatment, and given the similarity of the two groups on multiple pretest measures and demographic measures, Langer and Rodin concluded the two groups were from the same population. Thus, there is little evidence to suggest that the natural rate of change for the two groups differed, allowing the investigators to rule out the selection-maturation threat to internal validity.

Selection-History Effect Another threat to internal validity that is not controlled in the nonequivalent control group design is the additive effect of selection and history. Cook and Campbell (1979) refer to this problem as *local history effects.*
This problem arises when an event other than the treatment affects one group and not the other. Local history, for example, could be a problem in the Langer and Rodin study if an event affecting the residents’ happiness and alertness occurred on one floor of the nursing home but not on the other. You can probably imagine a number of possibilities. A change in nursing staff on one floor, for instance, might bring about either an increase or a decrease in residents’ morale, depending on the nature of the change and any differences between the behavior of a new nurse and that of the previous one. Problems of local history become more problematic the more the settings of the individuals in the treatment and comparison groups differ. Langer and Rodin do not specifically address the problem of local history effects.

Selection-Instrumentation Effect A threat due to the combination of selection and instrumentation occurs when changes in a measuring instrument are more likely to be detected in one group than they are in another. Floor or ceiling effects, for instance, could make it difficult to detect changes in behavior from pretest to posttest. If this is more of a problem in one group than in another, a selection-instrumentation effect is present. Shadish et al. (2002) point out that this threat to internal validity is more likely to be a problem the greater the nonequivalence of the groups and the closer the group scores are to the end of the scale. Because Langer and Rodin’s groups did not differ on the pretest, and because performance of the groups did not suggest floor or ceiling effects on the measurement scales that were used, this threat to internal validity seems implausible in their study.

Differential Statistical Regression The final threat to internal validity that is not controlled in the nonequivalent control group design is differential statistical regression (Shadish et al., 2002). As we described earlier, regression toward the mean is to be expected when individuals are selected on the basis of extreme scores (e.g., the poorest readers, the workers with the lowest productivity, the patients with the most severe problems). Differential regression can occur when regression is more likely in one group than in another. For example, consider a nonequivalent control group design in which the participants with the most serious problems are placed in the treatment group. It is possible, even likely, that regression would occur for this group. The changes from pretest to posttest may be mistakenly interpreted as a treatment effect if regression is more likely in the treatment group than in the control group. Because the groups in the Langer and Rodin study came from the same population and there is no evidence that one group’s pretest scores were more extreme than another’s, a threat to internal validity due to differential statistical regression is not plausible in their study.

Expectancy Effects, Contamination, and Novelty Effects Langer and Rodin’s study could also have been influenced by three additional threats to internal validity that can even affect true experiments—expectancy effects, contamination, and novelty effects. If observers (e.g., staff) in their study had been aware of the research hypothesis, it is possible that they inadvertently rated residents
as being better after the responsibility instructions than before. This observer bias, or expectancy effect, appears to have been controlled, however, because all the observers were kept unaware of the research hypothesis. Langer and Rodin also considered possible contamination effects. Residents in the control group might have become demoralized if they learned that residents on another floor were given more opportunity to make decisions. In this case, the use of different floors of the nursing home was advantageous; Langer and Rodin (1976) indicate that “there was not a great deal of communication between floors” (p. 193). Thus, contamination effects do not seem to be present, at least on a scale that would destroy the internal validity of the study.

Novelty effects would be present in the Langer and Rodin study if residents on the treatment floor gained enthusiasm and energy as a result of the innovative responsibility-inducing treatment. Thus, this new enthusiasm, rather than treatment residents’ increased responsibility, may explain any treatment effects. In addition, the special attention given the treatment group may have produced a Hawthorne effect in which residents on the treated floor felt better about themselves. It is difficult to rule out completely novelty effects or a Hawthorne effect in this study. According to the authors, however, “There was no difference in the amount of attention paid to the two groups” (p. 194). In fact, communications to both groups stressed that the staff cared for them and wanted them “to be happy.” Thus, without additional evidence to the contrary, we can conclude that the changes in behavior Langer and Rodin observed were due to the effect of the independent variable, not to the effect of an extraneous variable that the investigators failed to control.

For investigators to decide whether an independent variable “worked” in a particular experiment, they must systematically collect and carefully weigh evidence for and against the interpretation that the treatment caused behavior to change. This involves going through the checklist of threats to internal validity and examining the data and the situation to determine whether the threats can be ruled out as not being plausible explanations for a relationship between an independent variable and a dependent variable. If an investigator becomes aware of evidence indicating a threat cannot be ruled out, or no data are available to rule out a threat, then he or she must conclude that a demonstrated relationship between an independent and dependent variable may not be causal. The investigator can be confident in asserting the effect of the treatment only when all the threats are eliminated.

The Issue of External Validity

- Similar to internal validity, the external validity of research findings must be critically examined.
- The best evidence for the external validity of research findings is replication with different populations, settings, and times.

We must make the same systematic analysis into the external validity of a quasi-experiment that we did into its internal validity. What evidence is there that the particular pattern of results is restricted to a particular group of participants, setting, or time? For example, although Langer and Rodin suggest
that certain changes be made in the way the elderly are cared for, we might question whether the effectiveness of the responsibility-inducing treatment would hold for all elderly residents, for all types of nursing facilities, and at different times. That the particular nursing home selected by Langer and Rodin (1976) was described as “rated by the state of Connecticut as being among the finest care units” (p. 193) suggests that the residents, facilities, and staff might be different from those found in other facilities. For instance, if residents at this particular nursing home were relatively more independent before coming to the home than residents at other homes (perhaps because of differences in socioeconomic status), then the changes experienced upon moving into a home might have had greater impact on them. Consequently, the opportunity to have more responsibility might be more important to these residents relative to residents in other homes.

When investigators question whether findings from their experiment will generalize, they create the opportunity to replicate their finding with different populations, settings, and times in order to establish external validity. For example, the responsibility-induction treatment may be attempted at a different nursing home, or perhaps with disabled individuals, or with teenagers living in residential treatment facilities. The manner in which a responsibility-induction treatment is implemented may be changed to suit a particular setting and population. You may see that many new research questions arise as we consider the external validity of a finding. No single study answers all questions about a research hypothesis, and research is a cumulative process: We gain support for hypotheses and theories as findings are replicated across many studies.

Interrupted Time-Series Designs

- In a simple interrupted time-series design, researchers examine a series of observations both before and after a treatment.
- Evidence for treatment effects occurs when there are abrupt changes (discontinuities) in the time-series data at the time treatment was implemented.
- The major threats to internal validity in the simple interrupted time-series design are history effects and changes in measurement (instrumentation) that occur at the same time as the treatment.

A second quasi-experiment, a simple **interrupted time-series design**, is possible when researchers can observe changes in a dependent variable for some time before and after a treatment is introduced (Shadish et al., 2002). The observations may be repeated within the same individuals (e.g., when evaluating the effect of a medical treatment on patients’ symptoms), or the time series may involve observations of a dependent variable within a population. For example, researchers may analyze archival records for traffic fatalities, video game sales, church attendance—the list is endless. The simple interrupted time-series design is used to assess the effect of many types of treatments, such as when a new product is introduced, a new social reform started, or a program is begun to reduce infections in hospitals. The essence of this design is the availability of
periodic measures before and after a treatment has been introduced. The simple interrupted time-series design can be outlined in the following way:

\[O_1 O_2 O_3 O_4 O_5 X O_6 O_7 O_8 O_9 O_{10} \]

Investigators also use the interrupted time-series design to assess the effect of natural treatments (see Chapter 4), such as occurred with the terrorist attacks of September 11, 2001. Although many researchers assessed the negative impact of the attacks (e.g., fear, prejudice), Peterson and Seligman (2003) investigated how the attacks affected people’s character strengths. As part of an ongoing Internet project, these investigators had archival data for hundreds of individuals who completed their questionnaire, *Values in Action (VIA) Classification of Strengths*. To describe the impact of 9/11, they averaged together responses for seven strengths to form a measure of theological strength: gratitude, hope, kindness, leadership, love, spirituality (faith), and teamwork. Their study nicely demonstrates the essential features of the simple interrupted time-series design because they examined responses for these items for people who completed the questionnaire 4–9 months prior (O₁), 2–4 months prior (O₂), and 0–2 months prior (O₃) to September 11 (the treatment, X), and in similar time periods after September 11 (O₄, O₅, O₆). (Note this is not a longitudinal design; different people completed the questionnaire during these time periods.) Figure 10.5 displays the mean responses for these theological strengths (higher scores represent greater strengths on the 5-point scale) at each time period.

FIGURE 10.5 Mean scores for self-reported character strength (a composite of gratitude, hope, kindness, leadership, love, spirituality, and teamwork) before and after September 11, 2001. Higher scores indicate greater strength. (Means approximated from data presented in Figure 1, Peterson & Seligman, 2003.)
There is a clear discontinuity (abrupt change) in the graph, providing evidence that the September 11 attacks increased people’s self-reported strengths.

Although a discontinuity in the time series is the major evidence of an effect of treatment, researchers typically observe gradual changes in the observations. Observations can also show a great deal of variability. Such was the case when researchers in Ohio investigated the effect of a clean indoor air ordinance in Bowling Green that banned smoking in workplaces and public places, effective March 2002 (Khuder et al., 2007). They examined records for hospital admissions due to smoking-related diseases, such as coronary heart disease, from January 1999 to June 2005.

Figure 10.6 illustrates the effect of the clean indoor air ordinance on hospital admissions for heart disease based on the findings of the study by Khuder and his colleagues. The graph line illustrates that hospitalizations were greater prior to the implementation of the clean-air ordinance in Bowling Green, with rates decreasing each year following the ban on smoking. Note that the decrease was not an abrupt change at the time of the ordinance. Gradual change over time makes interpretation of a treatment effect difficult. However, these investigators noted that heart disease takes time to develop, and recovery from heart disease likewise requires time. Thus, the effect of reduced exposure to cigarette smoke is likely to take months to become apparent, as they observed in their data.

There was a reduction in hospital admissions due to coronary heart disease by 39% one year after the smoking ban, and by 47% after 3 years. In general, when delayed effects of a treatment are likely, the number of alternative explanations for a treatment effect increases (Shadish et al., 2002). One possible alternative explanation is that hospitalizations for heart disease in the Bowling Green study
could have declined even without the smoking ban due to greater national attention to the effects of diet, exercise, and smoking on heart disease.

Sometimes researchers are able to interpret the results of an interrupted time-series design and other quasi-experimental designs on the basis of visual inspection of the time-series data. In other situations, sophisticated statistical analyses may be needed to interpret the outcome (e.g., Michielutte, Shelton, Paskett, Tatum, & Velez, 2000). For more information, refer to Shadish et al.’s (2002) text, Experimental and Quasi-Experimental Designs for Generalized Causal Inference.

When evaluating the threats to internal validity in the simple interrupted time-series design, researchers pay special attention to effects of history (Shadish et al., 2002). In the case of the people’s self-reported character strengths, was there some other event or experience, other than the terrorist attacks of September 11, that could account for the increase in strengths at that particular point in time? Peterson and Seligman (2003) noted that other strengths measured by their questionnaire, such as curiosity and honesty, did not change over time, suggesting that theological strengths were specifically impacted by the terrorist attacks.

Causal interpretations in the time-series design are also threatened by influences that follow a cyclical pattern, including seasonal variation (Cook & Campbell, 1979). Time of year may play a role in the time-series analysis for the theological strengths measured by Peterson and Seligman (2003). In the weeks and months following the September 11 attacks, many religious and secular holidays were celebrated, such as Yom Kippur, Ramadan, Thanksgiving, Hanukkah, and Christmas. Theological strengths may have increased over time because of respondents’ observance of these seasonal holidays, rather than due to the effect of the terrorist attacks. One way to test this hypothesis would be to collect data during another year to see whether measures of theological strengths increase during these months (i.e., September–December). If so, seasonal variation represents an alternative explanation of the Peterson and Seligman findings.

Instrumentation must also be considered a threat to internal validity in the simple interrupted time-series design (Shadish et al., 2002). When new programs or new social policies are instituted, for example, there are often accompanying changes in the way records are kept or in the procedures used to collect information. A program intended to reduce crime may lead authorities to modify their definitions of particular crimes or to become more careful when observing and reporting criminal activities. Nevertheless, for an instrumentation threat to be plausible, the changes in instrumentation must be shown to have occurred at exactly the time as the intervention (Campbell & Stanley, 1966).

When multiple observations are made within the same individuals before and after a treatment, researchers must consider the threats to internal validity due to maturation, testing, and regression. In most cases, the presence of multiple observations allows researchers to eliminate these threats as plausible
alternative explanations for a shift in the time series. For example, effects due to maturation tend to be gradual, nor likely to show a sharp discontinuity at precisely the same time as the treatment. Similarly, researchers can examine the time series prior to the treatment for evidence of testing and regression effects.

Threats to external validity in the simple interrupted time-series design must be examined carefully. When pretreatment observations of behavior are based on multiple tests, then it is very likely that an effect of the treatment may be restricted to those individuals who have had these multiple test experiences. Moreover, the interrupted time-series design generally involves testing only a single group that has not been randomly selected. This aspect of the design leaves open the possibility that the results are limited to people with characteristics similar to those who took part in the study.

Time Series with Nonequivalent Control Group

- In a time series with nonequivalent control group design, researchers make a series of observations before and after treatment for both a treatment group and a comparable comparison group.

The internal validity of the interrupted time-series design can be enhanced greatly by including a control group following the procedures we described earlier for the nonequivalent control group design. For the *time series with nonequivalent control group design* the researcher must find a group that is comparable to the treatment group and that allows a similar opportunity for multiple observations before and after the time that the treatment is administered to the experimental group. This design is outlined as follows:

\[
\begin{align*}
O_1 & \ O_2 & \ O_3 & \ O_4 & \ O_5 & X & \ O_6 & \ O_7 & \ O_8 & \ O_9 & \ O_{10} \\
\hline
O_1 & \ O_2 & \ O_3 & \ O_4 & \ O_5 & O_6 & O_7 & O_8 & O_9 & O_{10}
\end{align*}
\]

As before, a dashed line is used to indicate that the control group and the experimental group were not randomly assigned. The interrupted time series with nonequivalent control group design permits researchers to rule out many threats due to history. For example, when Khuder and his colleagues examined the effect of the smoking ban in Bowling Green, Ohio, they also examined hospitalization records for Kent, Ohio, 150 miles away from Bowling Green. They chose Kent as a nonequivalent control group because of the similarity of the population size, age, and gender distribution, and most notably because officials in Kent did *not* institute a smoking ban. Figure 10.7 illustrates the different rates of hospitalization for the two cities. Hospital admissions for heart disease declined in Bowling Green following the smoking ban, but this effect was not observed in Kent, Ohio.

Researchers are able to rule out many threats to internal validity when they use the time series with nonequivalent control group design. For example, we can rule out the possibility that the hospitalization decline in Bowling Green was due to greater national attention to diet, exercise, and smoking because this greater attention would have impacted people in Kent as well. To be plausible,
an alternative explanation for the decline in Bowling Green hospitalization would need to affect people in Bowling Green and not Kent, and occur at the same time as the smoking ban (i.e., additive effects with selection). As you can see, alternative explanations for a treatment effect become less likely when researchers have available many observations before and after a treatment and a carefully selected control group, making the time series with nonequivalent control group a powerful quasi-experimental design.

Program Evaluation

- Program evaluation is used to assess the effectiveness of human service organizations and provide feedback to administrators about their services.
- Program evaluators assess needs, process, outcome, and efficiency of social services.
- The relationship between basic research and applied research is reciprocal.
- Despite society’s reluctance to use experiments, true experiments and quasi-experiments can provide excellent approaches for evaluating social reforms.

Organizations that produce goods have a ready-made index of success. If a company is set up to make touchpads, its success is ultimately determined by its profits from the sale of touchpads. At least theoretically, the efficiency and effectiveness of the organization can be easily assessed by examining the company’s financial ledgers. Increasingly, however, organizations of a different sort play a critical role in our society. Because these organizations typically provide services rather than goods,
Posavac (2011) refers to them as human service organizations. For example, hospitals, schools, police departments, and government agencies provide a variety of services ranging from emergency room care to fire prevention inspections. Because profit-making is not their goal, some other method must be found to distinguish between effective and ineffective agencies. One useful approach to assessing the effectiveness of human service organizations is program evaluation.

Program evaluation comprises research methodology used to evaluate the need for human services, the implementation of those services, the effect of the services on people who are served, and the efficiency of the services (Posavac, 2011). The overarching goal of program evaluation is to provide feedback regarding human service activities. Program evaluations are designed to provide feedback to the administrators of human service organizations to help them decide what services to provide to whom and how to provide them most effectively and efficiently. Program evaluation is an integrative discipline that draws on political science, sociology, economics, education, and psychology. We are discussing program evaluation at the end of this chapter on research in natural settings because it represents perhaps the largest-scale application of the principles and methods we have been describing throughout this book.

Program evaluators consider four types of research questions having to do with social services: questions about needs, process, outcome, and efficiency (Posavac, 2011). An assessment of needs seeks to determine the unmet needs of the people for whom an agency might provide a service. Consider, for example, a city government that has received a proposal to institute a program of recreational activities for senior citizens in the community. The city would first want to determine whether senior citizens actually need or want such a program. If the senior citizens do want such a program, the city would further want to know what kind of program would be most attractive to them. The methods of survey research are used extensively in studies designed to assess needs. Administrators can use the information obtained from an assessment of needs to help them plan what programs to offer.

Once a program has been set up, program evaluators may ask questions about the process that has been established. Observational methods are often useful in assessing the processes of a program. Programs are not always implemented the way they were planned, and it is essential to know what actually is being done when a program is implemented. If the planned activities were not being used by the senior citizens in a recreational program designed specifically for them, it might suggest that the program was inadequately implemented. An evaluation that provides answers to questions about process, that is, about how a program is actually being carried out, permits administrators to make adjustments in the delivery of services in order to strengthen the existing program (Posavac, 2011).

The next set of questions a program evaluator is likely to ask involves the outcome. Has the program been effective in meeting its stated goals? For example, do senior citizens now have access to more recreational activities, and are they pleased with these activities? Do they prefer these particular activities over other activities? The outcome of a neighborhood-watch program designed to curb neighborhood crime might be evaluated by assessing whether burglaries and assaults decreased following the implementation of the program. It is possible to
use archival data like those described in Chapter 4 to carry out evaluations of outcome. For example, examining police records in order to document the frequency of various crimes is one way to assess the effectiveness of a neighborhood-watch program. Evaluations of outcome may also involve both experimental and quasi-experimental methods for research in natural settings. An evaluator may, for example, use a nonequivalent control group design to assess the effectiveness of a school reform program by comparing students’ performance in two different school districts, one with the reform program and one without.

The final questions evaluators might ask are about the efficiency of the program. Most often, questions about efficiency relate to the cost of the program. Choices often have to be made among possible services that a government or other institution is capable of delivering. Information about how successful a program is (outcome evaluation) and information about the program’s cost (efficiency evaluation) are necessary if we want to make informed decisions about continuing the program, how to improve it, whether to try an alternative program, or whether to cut back on the program’s services.

Earlier in this chapter and in Chapter 2 we described differences between basic and applied research. Program evaluation is perhaps the extreme case of applied research. The purpose of program evaluation is practical, not theoretical. Nevertheless, even in the context of blatantly practical goals, a case can be made for a reciprocal relationship between basic and applied research. One such model of this relationship is illustrated in Figure 10.8. The idea is that each domain of research serves the other in an ongoing circular way. Specifically, basic research provides us with scientifically based principles that express certain regularities.

FIGURE 10.8 Model illustrating reciprocal relationship between basic and applied research. (From Salomon, 1987, p. 444.)
in nature. When these principles are examined in the complex and “dirty” world where they supposedly apply, new complexities are recognized and new hypotheses are called for. These new complexities are then tested and evaluated in the lab before being tried out again in the real world.

The work of Ellen Langer serves as a concrete example of this circular relationship (see Salomon, 1987). She identified a decline in elderly people’s health once they entered nursing homes (see Langer, 1989; Langer & Rodin, 1976, described in this chapter). These naturalistic observations led her to develop a theory of mindfulness, which she has tested under controlled experimental conditions and which has implications for more general theories of cognitive development, education, and health (see, for example, Hsu, Chung, & Langer, 2010; Langer, 1989, 1997; Langer & Piper, 1987). The theory provides a guide for her applied work—designing new models of nursing homes. Tests of the practical effects of changes in the care given by nursing homes on the residents’ health and well-being will undoubtedly lead to modifications of her theory of mindfulness.

According to Campbell (1969), it is important for public officials involved with social experiments to emphasize the importance of the problem rather than the importance of the solution. Instead of pushing for one certain cure-all (which, in most cases, has little opportunity for success), officials must be ready to execute reform in a manner that permits the clearest evaluation and must be prepared to try different solutions if the first one fails. Public officials must, in other words, be ready to use the experimental method to identify society’s problems and to determine effective solutions (see Box 10.2).

Campbell’s (1969) idea that social reforms and experimental methods be routinely brought together has had some impact on social policymakers, but it is still underutilized (see Berk et al., 1987). Although various types of social reforms are routinely implemented, rarely is the success of these reforms evaluated. Campbell argued in 1969 that the political climate isn’t ready to accept scientific evaluation, and that likely remains true in our present time. What politician would vote to fund a program that requires testing to determine its effectiveness, and who would want to be associated with a program shown to have failed? Campbell suggested there is “safety under the cloak of ignorance” (pp. 409–410). That is, society prefers to continue under the assumption that programs work rather than to evaluate whether, in fact, they do. Nevertheless, without social experimentation, especially that which makes use whenever possible of randomized field experiments, policymakers and the community at large may believe a treatment works when it doesn’t or vice versa. Such incorrect decisions lead us to allocate money and resources to ineffective programs.

In the 1980s, a show called *Scared Straight* was aired on national television. It described a juvenile education program implemented at Rahway State Prison in New Jersey. The program involved taking youthful offenders into a prison to meet with selected inmates. The goal was to inform juveniles about the reality of prison life and, thereby, the program leaders hoped, dissuade them from further illegal activity. Unsubstantiated claims were made for the effectiveness of the program, including some suggesting a success rate as high as 80% to 90% (see Locke, Johnson, Kirigin-Ramp, Atwater, & Gerrard, 1986). The Rahway program is just
one of several similar programs around the country. But do these programs really work? Several evaluation studies of the exposure-to-prison programs produced mixed results, including positive findings, findings of no difference between control and experimental participants, as well as results suggesting that the program may actually increase juvenile crime among some types of delinquents. It has been suggested that, because less-hardened juvenile offenders have recently begun a lifestyle wherein they are being recognized and reinforced by their peers for their toughness, this image is also reinforced by the tough image often projected by the prisoners. On the other hand, hardened juvenile offenders, who have achieved a level of status among their peers for some period of time, may be more threatened by the prospects of prison life because it would mean loss of that status (see Locke et al., 1986).
Attempts to evaluate the effectiveness of this significant social program provide good examples of the difficulties inherent in evaluation research: the difficulty of randomly assigning participants, of getting administrators to cooperate with experimental procedures, and of dealing with loss of participants during the evaluation. Nevertheless, program evaluation based on sound experimental methodology offers policymakers at all levels (institution, community, city, state, federal) the information that can help them make informed choices among possible treatments for social problems. Because resources inevitably are in short supply, it is critical that resources be put to the best possible use. Our hope is that your knowledge of research methods will allow you to participate knowledgeably and perhaps contribute constructively to the ongoing debate concerning the role of experimentation in society.

Summary

Experimentation in natural settings differs in many ways from experimentation in psychology laboratories. The reasons for doing experiments in natural settings include testing the external validity of laboratory findings and assessing the effects of “treatments” aimed at improving conditions under which people work and live.

Many social scientists have argued that society must be willing to take an experimental approach to social reform—one that will allow the clearest evaluation of the effectiveness of new programs. In many situations (for instance, when available resources are scarce), true experiments involving randomization of individuals to treatment and no-treatment conditions are recommended. However, if a true experiment is not feasible, quasi-experimental procedures are the next best approach. Quasi-experiments differ from true experiments in that fewer plausible rival hypotheses for an experimental outcome are controlled. When specific threats to the internal validity of an experiment are not controlled, then the experimenter, by logically examining the situation and by collecting additional evidence, must seek to rule out these threats to internal validity.

A particularly strong quasi-experimental procedure is the nonequivalent control group design. This procedure generally controls for all major threats to internal validity except those associated with additive effects of (1) selection and history, (2) selection and maturation, (3) selection and instrumentation, and (4) threats due to differential statistical regression. In addition to the major threats to internal validity, an experimenter must be sensitive to possible contamination resulting from communication between groups of participants. Problems of experimenter expectancy effects (observer bias); questions of external validity; and novelty effects, including the Hawthorne effect, are potential problems in all experiments, whether conducted in the laboratory or in the field.

When it is possible to observe changes in a dependent measure before and after a treatment is administered, one can carry out a simple interrupted time-series design. The researcher using this design looks for an abrupt change (discontinuity) in the time series that coincides with the introduction of the
treatment. The major threat to internal validity in this design is history—some event other than the treatment may have been responsible for the change in the time series. Instrumentation also can be a problem, especially when the treatment represents a type of social reform that may lead to changes in the way records are kept or data collected. By including a control group that is as similar as possible to the experimental group, one can strengthen the internal validity of a simple time-series design. A time series with nonequivalent control group, for example, controls for many possible history threats.

A particularly important goal of research in natural settings is program evaluation. Professionals other than psychologists (such as educators, political scientists, and sociologists) are often involved in this process. Types of program evaluation include assessment of needs, process, outcome, and efficiency. Perhaps the most serious constraints on program evaluation are the political and social realities that surround it. The reluctance of public officials to seek an evaluation of social reforms is often an obstacle to overcome. Nevertheless, social scientists have called on program evaluators to make themselves available to human services organizations. By answering this call, we may help change society in a way that will bring the most effective services to those most in need.

KEY CONCEPTS

- threats to internal validity 310
- novelty effects 315
- history 310
- quasi-experiments 317
- maturation 310
- nonequivalent control group design 318
- testing 310
- simple interrupted time-series design 326
- instrumentation 311
- time series with nonequivalent control group design 330
- regression 311
- program evaluation 332
- subject attrition 312
- selection 312
- contamination 314

REVIEW QUESTIONS

1. Identify two reasons why it might be especially important to carry out experiments in natural settings.
2. Explain how laboratory experiments and those in natural settings differ in control, external validity, goals, and consequences.
3. Describe the three distinguishing characteristics of true experiments, and identify what can be said about the independent variable based on these characteristics.
4. What obstacles do researchers have to overcome when they try to carry out experiments in natural settings?
5. Identify two procedures that permit researchers to assign participants randomly to conditions while still giving all participants access to the experimental treatment.
6. Describe and explain the consequences of the three ways in which participants in a control group might respond when contamination occurs.
7 Explain how novelty effects, including the Hawthorne effect, may influence a researcher’s interpretation of the effectiveness of an experimental treatment.
8 What is the best test of external validity?
9 Explain why it is essential to use a pretest in the nonequivalent control group design.
10 Explain how one threat to internal validity is controlled in the nonequivalent control group design, and describe a threat to internal validity that is not controlled in this design.
11 Identify two reasons why we cannot conclude that the treatment and control groups in a nonequivalent control group design are equivalent even when the pretest scores are the same for both groups.
12 Explain the difference between a history threat to internal validity and what is called a “local history effect” in the nonequivalent control group design.
13 What is the major evidence for an effect of the treatment in a simple interrupted time-series design, and what are the major threats to internal validity in this design?
14 Explain how the addition of a nonequivalent control group to a simple interrupted time-series design reduces the threat to the internal validity of the design.
15 Describe the type of information sought when evaluators ask each of the four questions typically addressed in program evaluation.

CHALLENGE QUESTIONS

1 A quasi-experiment was used to determine whether multimedia instruction is effective. Two sections of introductory psychology were taught by the same instructor, both in the early afternoon. In one section (the treatment group), the instructor used multimedia instruction. In the other section, the instructor covered the same material but did not use multimedia instruction. Students did not know when they registered for the course whether multimedia instruction would be used, but the students were not randomly assigned to sections. Students’ knowledge of the course material was assessed using two forms of a comprehensive introductory psychology test. The comprehensive test can be considered a reliable and valid test that can be used to compare the effectiveness of the instruction in the two sections. The students in both sections were tested on the second day of class (the pretest) and at the final (the posttest). Different forms of the test were used at the pretest and at the posttest.
 A What quasi-experimental design is used in the study?
 B The instructor initially considered doing a true experiment rather than a quasi-experiment. Comment critically on the fairness of random assignment if you were arguing in favor of doing a true experiment to test the effectiveness of multimedia instruction.
 C Explain why the quasi-experimental design used by the instructor is more effective than if the instructor had tested only students who had received multimedia instruction. Identify one threat to internal validity that was controlled in this study that would not have been controlled if only students who received multimedia instruction had been tested.
2 A psychologist published a book describing the effects of divorce on men, women, and children. She was interested in the effects of divorce that occurred 10 years after the divorce. She found that even 10 years after a divorce half of the women and one third of the men were still intensely angry. Although half the men and women described themselves as happy, 25% of the women and 20% of the men remained unable to “get their lives back on track.” In only 10% of the divorced families did both the former husbands and wives have happy, satisfying lives a decade later. Finally, more than half of the children of divorce entered adulthood as underachieving and self-deprecating men and women. These findings were based on a 15-year study of 60 divorced couples and their 131 children living in Marin County, California (an affluent
Answer to Stretching Exercise

1 History is a threat when an event other than the treatment can explain the participants’ improvement. For example, participants may have read self-help books, tried herbal supplements, talked to friends or pastors, or experienced any number of potentially beneficial “treatments.” Any of these other events may have caused the depression to improve, rather than the psychologist’s treatment.

2 Maturation occurs when participants naturally change over time. One of the things we know about depression is that it tends to improve over time. Therefore, the participants’ improvement may reflect natural decreases in depression over time, rather than the effect of the treatment.

3 A testing threat occurs when a first administration of a test influences subsequent testing. In this study, participants may have remembered their earlier responses on the depression measure and, perhaps, in an effort to demonstrate they improved, chose responses that indicated less depression at posttest (even if they didn’t feel less depressed). An instrumentation threat occurs when the measure used to assess thoughts, feelings, and behavior changes over time. Because the same questionnaire was used for both the pretest and posttest, this threat is less likely.

4 Statistical regression is possible when participants are selected because they are extreme on a pretest measure. In this study, participants were selected because they were depressed—they scored high on a measure of depression. It’s possible that the lower scores at posttest indicated improvement because of statistical regression to the mean, not because of the effects of treatment.
Answer to Challenge Question 1

A The nonequivalent control group design was used in this study.
B Students may perceive random assignment to the two sections as unfair because they would not have a choice about which section they would take. If we do not know whether multimedia instruction is effective, then random assignment is the best and fairest method to determine whether multimedia instruction is effective.
C If only the students who had received multimedia instruction had been tested, the design of the study would have been a single group pretest-posttest design. There are several threats to the internal validity of a pretest-posttest single group design. That is why it is referred to as a pre-experimental design or a bad experiment. One possible threat in this study is due to testing; that is, students often improve from an initial test in a course to the second test because they gain familiarity with the testing procedure and the instructor’s expectations. This improvement would be expected to occur even if multimedia instruction had not been used. The nonequivalent control group design in this study controls for this threat because any increase in test scores due to testing effects would likely be the same for both groups. A greater increase from the pretest to the posttest for the group given multimedia instruction, relative to the control group, can be interpreted as an effect of the instruction.
PART FIVE

Analyzing and Reporting Research
CHAPTER ELEVEN

Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation

CHAPTER OUTLINE

OVERVIEW
THE ANALYSIS STORY
COMPUTER-ASSISTED DATA ANALYSIS
ILLUSTRATION: DATA ANALYSIS FOR AN EXPERIMENT
COMPARING MEANS
Stage 1: Getting to Know the Data
Stage 2: Summarizing the Data
Stage 3: Using Confidence Intervals to Confirm What the Data Reveal

ILLUSTRATION: DATA ANALYSIS FOR A CORRELATIONAL STUDY
Stage 1: Getting to Know the Data
Stage 2: Summarizing the Data
Stage 3: Constructing a Confidence Interval for a Correlation

SUMMARY
CHAPTER 11: Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation

OVERVIEW

The primary goal of data analysis is to determine whether our observations support a claim about behavior (Abelson, 1995). The claim may be that children of drug-addicted mothers exhibit more learning difficulties than those born to drug-free mothers, or that a program intended to prevent depression has worked. Whatever the claim, our case must be prepared with careful attention given to the quality of the evidence and to the way it is presented. When a quantitative research study is conducted, the evidence is primarily the numerical data we collected. To prepare a convincing argument, we need to know what to look for in these data, how to summarize that information, and how best to evaluate the information.

Data, of course, do not come out of thin air; we can assume results were obtained using a particular research method (e.g., observation, survey, experiment). If serious errors were made in the data collection stage, then there may be nothing we can do to “save” the data and it may be best to start again. Thus, we need to ensure that the data for the analysis were gathered after giving careful consideration to the statement of the research hypothesis (i.e., our tentative claim about behavior), the choice of a proper research design to test that hypothesis, selection of appropriate response measures, and assessment of statistical power. And, of course, we want to make sure that the data were collected in a manner that minimizes the contribution of demand characteristics, experimenter biases, confoundings, or other artifacts of the research situation. In short, we seek data from a “good” research study, one that is internally and externally valid, sensitive, and reliable.

Trusting we have obtained data based on a sound research study, what should we do next? There are three distinct, but related stages of data analysis: getting to know the data, summarizing the data, and confirming what the data reveal (see Box 11.1). Whether conducting an observational study (see Chapter 4) or an experiment (see Chapters 6–8) based on quantitative data, the first two stages of data analysis, getting to know the data and summarizing the data, proceed in much the same way. When conducting a survey (see Chapter 5) or other research study in which evidence for covariation between two variables is sought, data summary proceeds somewhat differently. We will use several research examples to illustrate the stages of data analysis, including those that focus on mean performance of one or more groups as well as those that emphasize the correlation between variables.

There are different, but complementary, approaches to the third stage of analysis, confirming what the data tell us. One approach makes use of confidence intervals to provide evidence for the range and precision of estimation of population parameters. Another relies on null hypothesis significance testing (NHST). Both of these approaches were briefly introduced in Chapter 6, and, as we said, these approaches are related; however, there are important differences and we will introduce them first separately and then show how information from both approaches might be combined in the final analysis story. In this chapter we discuss confidence intervals and in Chapter 12, NHST. In Chapter 12 we also
The three major stages of data analysis can be described as follows:

I Getting to Know the Data In the first stage we want to become familiar with the data. This is an exploratory or investigative stage (Tukey, 1977). We inspect the data carefully, get a feel for it, and even, as some experts have said, “make friends” with it (Hoaglin, Mosteller, & Tukey, 1991, p. 42). Questions we ask include, What is going on in this number set? Are there errors in the data? Do the data make sense or are there reasons for “suspecting fishiness” (Abelson, 1995, p. 78)? Visual displays of distributions of numbers are important at this stage. What do the data look like? Only when we have become familiar with the general features of the data, have checked for errors, and have assured ourselves that the data make sense, should we proceed to the second stage.

II Summarizing the Data In the second stage we seek to summarize the data in a meaningful way. The use of descriptive statistics and creation of graphical displays are important at this stage. How should the data be organized? Which ways of describing and summarizing the data are most informative? What happened in this study as a function of the factors of interest? What trends and patterns do we see? Which graphical display best reveals these trends and patterns? When the data are appropriately summarized, we are ready to move to the confirmation stage.

III Confirming What the Data Reveal In the third stage we decide what the data tell us about behavior. Do the data confirm our tentative claim (research hypothesis) made at the beginning of the study? What can we claim based on the evidence? Sometimes we look for a categorical, yes-no judgment, and act as judge and jury to render a verdict. Do we have evidence to convict? Yes or no: Is the effect real? At this stage we may use various statistical techniques to counter arguments that our results are simply “due to chance.” Null hypothesis testing, when appropriate, is performed at this stage of analysis. Our evaluation of the data, however, need not always lead us to a categorical judgment about the data (e.g., Schmidt, 1996). We don’t, in other words, have to attempt a definitive statement about the “truth” of the results. Our claim about behavior may be based on an evaluation of the probable range of effect sizes for the variable of interest. What, in other words, is likely to happen when this variable is present? Confidence intervals are particularly recommended for this kind of evaluation (e.g., Cohen, 1995; Hunter, 1997; Loftus, 1996).

The confirmation process actually begins at the first or exploratory stage of data analysis, when we first get a feel for what our data are like. As we examine the general features of the data, we start to appreciate what we found. In the summary stage we learn more about trends and patterns among the observations. This provides feedback that helps to confirm our hypotheses. The final step in data analysis is called the confirmation stage to emphasize that it is typically at this point when we come to a decision about what the data mean. Information obtained at each stage of data analysis, however, contributes to this confirmatory process (e.g., Tukey, 1977).

discuss the important concept of statistical power and its relationship to confidence intervals and NHST.

The Analysis Story

- When data analysis is completed, we must construct a coherent narrative that explains our findings, counters opposing interpretations, and justifies our conclusions.
Making a convincing argument for a claim about behavior requires more than simply analyzing the data. A good argument requires a good story. A trial attorney, in order to win a case, not only must call a jury’s attention to the facts of a case, but also must be able to weave those facts into a coherent and logical story. If the evidence points to the butler, then we want to know “why” the butler (not the cook) might have done it. Abelson (1995) makes a similar point regarding a research argument:

High-quality evidence, embodying sizeable, well-articulated and general effects, is necessary for a statistical argument to have maximal persuasive impact, but it is not sufficient. Also vital are the attributes of the research story embodying the argument. (p. 13)

Consequently, when data analysis is completed, we must construct a coherent narrative that explains our findings, counters opposing interpretations, and justifies our conclusions. In Chapters 12 and 13 we’ll return to the analysis story when we introduce guidelines to help you develop an appropriate narrative for your research study.

Computer-Assisted Data Analysis

- Researchers typically use computers to carry out the statistical analysis of data.
- In order to carry out statistical analyses using computer software, researchers must have good knowledge of research design and statistics.

Most researchers have ready access to computers that include appropriate software to carry out the statistical analysis of data sets. The ability to set up and carry out an analysis using a statistical software package and the ability to interpret the output are essential skills that must be learned by researchers. Some of the more popular software packages are known by abbreviations like BMDP, SAS, SPSS, and STATA. You likely have access to one or more of these programs on the computers in your psychology department or at your campus computer center, or perhaps even on your laptop.

Carrying out statistical analyses using computer software requires that the researcher have a good knowledge of research design and statistics. In Chapters 6, 7, and 8 we introduced various experimental designs. This knowledge is essential if you wish to use computer-assisted analysis. A computer is not able to determine what research design you used or the rationale behind the use of that design (although some of the user-friendly programs provide prompts to guide your thinking). To carry out computer-assisted data analysis, you must enter information such as the type of design that was used (e.g., random groups or repeated measures); the number of independent variables (e.g., single factor or multifactor); the number of levels of each independent variable; and the number of dependent variables and the level of measurement employed for each. You must also be able to articulate your research
hypotheses and to plan appropriate statistical tests of your research hypotheses. A computer will quickly and efficiently perform the computations necessary for obtaining descriptive and inferential statistics. To use the computer effectively as a research tool, however, you must give it specific directions regarding which statistical test you want it to perform and which data are to be used in computing the test. Finally, when the computer has carried out the computations, you must be able to interpret correctly the output showing the results of the analysis.

Illustration: Data Analysis for an Experiment Comparing Means

How many words do you know? That is, what is the size of your vocabulary? You may have asked yourself this question as you prepared for college entrance exams such as the SAT or ACT, or perhaps it crossed your mind as you thought about preparing for professional school exams such as the LSAT or GRE, as all of these exams emphasize vocabulary knowledge. Surprisingly, estimating a person’s vocabulary size is a complex task (e.g., Anglin, 1993; Miller & Wakefield, 1993). Problems immediately arise, for instance, when we begin to think about what we mean by a “word.” Is “play, played, playing” one word or three? Are we interested in highly technical or scientific words, including six-syllable names of chemical compounds? What about made-up words, or the name of your dog, or the word you use to call your significant other? One rather straightforward approach is to ask how many words a person knows in a dictionary of the English language. But even here we run into difficulties because dictionaries vary in size and scope, and thus results will vary depending on the specific dictionary that was used to select a word sample. And, of course, estimates of vocabulary knowledge will vary depending on how knowledge is tested. Multiple-choice tests will reveal more knowledge than will tests requiring written definitions of words.

One of the authors of your textbook was interested in the question of vocabulary size and conducted a study examining the vocabulary size of college students and older adults (see Zechmeister, Chronis, Cull, D’Anna, & Healy, 1995). A stratified (by letter of the alphabet) random sample of 191 words was selected from a modest-sized dictionary of the English language. Then a multiple-choice test with five alternatives was prepared. The correct meaning of the word appeared along with four lures or distractors chosen to make discrimination of the correct meaning difficult. For example, respondents were asked to identify the meaning of the word “chivalry” among the following alternatives: a. warfare, b. herb, c. bravery, d. lewdness, e. courtesy. The random sample of dictionary words was presented in booklets to 26 college-age students (mean age 18.5) and 26 older adults (mean age 76). On the basis of previous studies, the older adult group was expected to perform better than the younger group on the test of vocabulary knowledge.

We’ll use data from this study of vocabulary size to illustrate the three stages of data analysis.
Stage 1: Getting to Know the Data

- We begin data analysis by examining the general features of the data and edit or “clean” the data as necessary.
- It is important to check carefully for errors such as missing or impossible values (e.g., numbers outside the range of a given scale), as well as outliers.
- A stem-and-leaf display is particularly useful for visualizing the general features of a data set and for detecting outliers.
- Data can be effectively summarized numerically, pictorially, or verbally; good descriptions of data frequently use all three modes.

Cleaning the Data

We want to begin by examining the general features of the data and edit or “clean” the data as necessary (Mosteller & Hoaglin, 1991). We check carefully for errors such as missing or impossible values (e.g., numbers outside the range of a given scale). Errors can arise because participants misuse a scale (e.g., by reversing the order of importance) or because someone entering data into a computer skips a number or transposes a digit. When typing a manuscript, most of us rely on a “spell checker” to catch our many typos and misspellings. Unfortunately, there is no such device for detecting numerical errors that are entered into a computer (however, see Kaschak & Moore, 2000, for suggestions to reduce errors). It is up to the researcher to make sure that data are clean prior to moving ahead.

Of particular importance is the detection of anomalies and errors. As we have seen, an anomaly sometimes signals an error in data recording, such as would be the case if the number 8 appears among data based on respondents’ use of a 7-point scale, or if an IQ score of 10 was recorded in a sample of college student participants. Other anomalies are outliers. An outlier is an extreme number in an array; it just doesn’t seem to “go with” the main body of data even though it may be within the realm of possible values. When doing a reaction-time study, for instance, where we expect most responses to be less than 1,500 msec, we might be surprised to see a reaction time of 4,000 msec. If nearly all of the other values in a large data set are less than 1,500, a value of 4,000 in the same data set certainly could be viewed as an outlier. Yet such values are possible in reaction-time studies when participants sneeze, absentmindedly look away from a display, or mistakenly think that data collection has halted and start to leave. A respondent completing a questionnaire may misread a question and submit a response that is far more extreme than any other response in the data set. Unfortunately, researchers do not rely on a single definition of an outlier, and several “rules of thumb” are used (see, for example, Zechmeister & Posavac, 2003).

When anomalies appear in a data set, we must decide whether they should be excluded from additional analyses. Those anomalies that clearly can be judged to be errors should be corrected or dropped from the data set, but, when doing so, a researcher must report their removal from the data analysis and explain, if possible, why the anomaly occurred.
In the first stage of data analysis we also want to look for ways to describe the distribution of scores meaningfully. What is the dispersion (variability) like? Are the data skewed or relatively normally distributed? One of the goals of this first stage of analysis is to determine whether the data require transformation prior to proceeding. Transforming data is a process of “re-expression” (Hoaglin, Mosteller, & Tukey, 1983). Examples of relatively simple transformations include those that express inches as feet, degrees Fahrenheit as Celsius, or number correct as percent correct. More sophisticated statistical transformations are also sometimes useful.

The best way to get a feel for a set of data is to construct a picture of it. An advantage of computer-aided data analysis is that we can quickly and easily plot data using various display options (e.g., frequency polygons, histograms) and just as easily incorporate changes of scale (e.g., inches to feet) to see how the data picture is altered. Minimally, by experimenting with different ways to visualize our data set, we become more familiar with it. Which visual representation reveals the most about our data? What do we learn about our data when we compare plots with the axes defined differently? Is a polygon or histogram more informative? A picture not only is worth a proverbial 1,000 words, but also it can quickly summarize 1,000 numbers. As we become more familiar with different pictures of our data, we learn that some pictures are better than others.

The data from our example vocabulary study represented the number of correct meanings identified out of a possible 191. Because participants without knowledge of the correct answer can be correct by chance on multiple-choice tests, a standard correction for guessing was applied to individual responses. However, two typographical errors appeared in the booklets given to the older adult group, so these items were deleted from further analysis. Also, examination of the test booklets revealed that several of the older participants omitted a page when working through the test booklet. Thus, the number of possible words was reduced for these individuals. Because of these problems, the data were transformed to percent correct to account for differences in the total number of possible responses among participants.

After cleaning the data set, the researchers obtained the following data in the first stage of the analysis. These data are expressed in terms of percent correct multiple-choice performance for college students and older adults.

Older adults ($n = 26$): 70, 59, 68, 68, 57, 66, 78, 78, 64, 43, 53, 83, 74, 69, 59, 44, 73, 65, 32, 60, 54, 64, 82, 62, 62, 78.

Key Concept

Stem-and-Leaf Displays A stem-and-leaf display is particularly useful for visualizing the general features of a data set and for detecting outliers (Tukey, 1977). A stem-and-leaf display obtains its name through the convention of using leading digits in a numerical array as “stems” and trailing digits as “leaves.”
The following is a stem-and-leaf display for the college student data from our example vocabulary study:

```
2*  3
2  7
3*  01
3  889
4*  12234
4  5788
5*  0134
5  67899
6*  2
```

The leading digits are the first or tens’ digits (e.g., 2-, 3-, 4-) and the trailing digits are just that, those that trail the leading or most significant digits; in this example the trailing digits are the units’ or ones’ digits (e.g., -5, -6, -8). The display is made by arranging the leading digits in a vertical array beginning with the smallest at the top. A leading digit is followed, in ascending order, by as many trailing digits as appear in the distribution. Each line in the display is a stem followed by its leaves (Tukey, 1977). For example, the stem 3 in the above display has three leaves, 8, 8, 9, indicating that the numbers 38, 38, and 39 appear in the distribution. By convention, when many numbers are displayed, or when the entire data set contains only a few leading digits, a leading digit followed by an asterisk (*) is frequently used to indicate the first half of an interval (see Tukey, 1977). For example, 5* would be the stem for leaves 0, 1, 2, 3, and 4 (i.e., numbers 50–54); the leading digit 5 (without the *) would be the stem for leaves 5, 6, 7, 8, 9 (i.e., numbers 55–59). In the above display, for instance, the stem 2* has one leaf, 3, and the stem 2 has one leaf, 7, corresponding to the numbers 23 and 27, respectively.

There also may be more than one leading digit. For example, if scores varied between 50 and 150, single leading digits would be used for numbers less than 100 (8-, 9-, etc.), and two leading digits for numbers equal to or greater than 100 (10-, 11-, 12-, etc.).

A stem-and-leaf display allows us to identify every data point in the distribution. Moreover, an important advantage of a stem-and-leaf display is that it clearly reveals the shape of the distribution and the presence, if any, of outliers.

Look carefully at the stem-and-leaf display for the vocabulary data of the 26 college students. What do you see? Is the general shape of the distribution “normal” (i.e., symmetrical and bell-shaped) or skewed (i.e., asymmetrical with scores trailing off in one direction)? Is there a lot of dispersion, or do the numbers tend to center around a particular value? Are anomalous values present? We suggest that the stem-and-leaf display for these data reveals that the data are concentrated around the 40 and 50 percentages with the distribution somewhat negatively skewed (note how the “tail” trails off toward the low, or negative, end of the distribution). Outliers do not seem to be present (e.g., there are no single-digit percentages or percentages beyond the 60s).

It can be particularly revealing to display two stem-and-leaf displays side-by-side when comparing two groups of data. Consider the display pictured on the next page. The same stems are used with trailing digits in one distribution.
increasing from right to left (e.g., 997 5) and leaves in the other distribution ascending (on the same line) from left to right (e.g., 5 67899). This indicates that the first distribution had scores of 57, 59, and 59, and the second distribution had scores of 56, 57, 58, 59, and 59. Side-by-side stem-and-leaf displays might be meaningfully used, for instance, to compare responses to a questionnaire item when a researcher is comparing two groups that differ in socioeconomic status, age, gender, or in some other meaningful way.

A side-by-side stem-and-leaf display for the two conditions of the vocabulary study looks like this:

<table>
<thead>
<tr>
<th>Old Age</th>
<th>College Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2*</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2 3*</td>
<td>01</td>
</tr>
<tr>
<td>3</td>
<td>889</td>
</tr>
<tr>
<td>43 4*</td>
<td>12234</td>
</tr>
<tr>
<td>4</td>
<td>5788</td>
</tr>
<tr>
<td>43 5*</td>
<td>0134</td>
</tr>
<tr>
<td>997 5</td>
<td>67899</td>
</tr>
<tr>
<td>44220</td>
<td>6* 2</td>
</tr>
<tr>
<td>98865</td>
<td>6</td>
</tr>
<tr>
<td>430 7*</td>
<td></td>
</tr>
<tr>
<td>888 7</td>
<td></td>
</tr>
<tr>
<td>32 8*</td>
<td></td>
</tr>
</tbody>
</table>

Look at the display on the left, the one for the older participants. How would you characterize it? The data seem to be somewhat normally distributed, although an extreme score, an outlier, appears to be present. The “32” doesn’t seem to belong with the rest of the data. (There are ways to operationalize outliers in terms of their distance from the middle of the distribution, and some computer programs will do this automatically.) Without additional information about the nature of the respondent (e.g., possible visual problems), the experimenters could find no reason to exclude this score from the study. The presence of this possible outlier necessarily increases the amount of variability present in this group relative to what it would be without this score. Nevertheless, we must acknowledge that some data sets are naturally going to be more variable than others. For example, the older adults in this study simply may represent a more heterogeneous group of individuals than those in the college student sample. There is a moral here: Obtain as much relevant information about your participants as is conveniently possible at the time you collect data. An extreme score should be treated as a true score unless you know the score is extreme due to error or to circumstances unrelated to the study.

Now look at what the side-by-side stem-and-leaf display reveals about both distributions. You should immediately see that scores in the groups overlap to some degree, but there are many more scores above 60 in the older group than in the college group. This “picture” of the data begins to confirm the idea that the older adults performed better overall than the college students on this test of vocabulary size.
Conclusion In the first stage of data analysis—the process of getting to know our data—we should identify

(a) the nature and frequency of any errors in the data set and, if errors are present, whether corrections could be made or data need to be dropped;
(b) anomalous values, including outliers, and, if they are present, what reasons there might be for the presence of these values and what should be done about them (retained or dropped);
(c) the general features and shape of the distribution of numbers; and
(d) alternative ways to more meaningfully express the data.

Stage 2: Summarizing the Data

- Measures of central tendency include the mean, median, and mode.
- Important measures of dispersion or variability are the range and standard deviation.
- The standard error of the mean is the standard deviation of the theoretical sampling distribution of means and is a measure of how well we have estimated the population mean.
- Effect size measures are important because they provide information about the strength of the relationship between the independent variable and the dependent variable that is independent of sample size.
- An important effect size measure when comparing two means is Cohen’s d.

Data can be effectively summarized numerically, pictorially, or verbally. Good descriptions of data frequently use all three modes. In this chapter we will focus mainly on ways to summarize data numerically, that is, using descriptive statistics, although we do present some graphs. Information about drawing graphs to summarize data is also found in Chapter 13. Verbal description of data also is a major topic of Chapter 13 (see especially guidelines for writing the Results section of a research report).

The data from the vocabulary study will be summarized using measures of central tendency, dispersion, standard error of the mean, and effect size.

Key Concepts

Central Tendency Measures of central tendency include the mean, median, and mode. These measures of central tendency do just what their name implies: They indicate the score that the data tend to center around. The mode is the crudest measure of central tendency: It simply indicates the score in the frequency distribution that occurs most often. If two scores in the distribution occur with higher frequency than do other scores in the distribution, and if these two scores occur at different locations in the frequency distribution, this distribution is said to be bimodal (i.e., to have two modes).

The median is defined as the middle point in the frequency distribution. It is identified by ranking all the scores from lowest to highest and identifying the value that splits the distribution into two halves, each half having the same number of values. Consider this data set: 4, 5, 6, 7, 8, 8. For these data the median would be 6.5. When there are an even number of values, the median is defined as the average of the two middle numbers [in this case, $(6 + 7)/2 = 6.5$].
When there are an odd number of values, the median is, by convention, the middle value when numbers are arranged in ascending or descending order. For the number set 4, 5, 6, 17, 18, the median is 6. Note that the median would still be 6 if the highest value were 180, not 18. The median is the best measure of central tendency when the distribution includes extreme scores because it is less influenced by the extreme scores than is the mean.

The mean is the most commonly reported measure of central tendency and is determined by dividing the sum of the scores by the number of scores contributing to that sum. The mean of a population is symbolized as μ (Greek letter mu); the mean of a sample is indicated by M when reported in text, for example, in a Results section. (The symbol \bar{X} [read “X bar”] is typically used in statistical formulas.) The mean should always be reported as a measure of central tendency unless there are extreme scores in the distribution. When people speak of an “average” score, they usually are referring to the arithmetic mean. Measures of central tendency for the two groups in the vocabulary study are

<table>
<thead>
<tr>
<th></th>
<th>College</th>
<th>Older Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (M)</td>
<td>45.58</td>
<td>64.04</td>
</tr>
<tr>
<td>Median</td>
<td>46.00</td>
<td>64.50</td>
</tr>
<tr>
<td>Mode</td>
<td>38, 42, 48, 59</td>
<td>78</td>
</tr>
</tbody>
</table>

As you can see, the mean performance of the college group is much lower than the mean or average performance of the older adults. This confirms what we saw in the side-by-side stem-and-leaf display: The older group performed better overall on the average than did the college group. Note that the mean and median within each group are similar; thus, even though we identified an extreme score in the older sample when looking at the stem-and-leaf display, the presence of this score does not seem to have “thrown off” the mean as a measure of central tendency. There is more than one mode in the college data, each appearing twice; the most frequent score in the older group is 78, and it appeared only three times. As you can see, the mode is not particularly helpful in summarizing these small data sets.

Dispersion or Variability Whenever you report a measure of central tendency, it should always be accompanied by an appropriate measure of dispersion (variability). Measures of central tendency indicate the value in a frequency distribution on which scores tend to “center”; measures of dispersion indicate the breadth, or variability, of the distribution.

The crudest measure of dispersion (the counterpart of the mode) is the range. The range is represented by the lowest and highest scores in the distribution. For example, in a small distribution made up of the scores 1, 3, 5, 7 the range is 1–7.

The most commonly used measure of dispersion (the counterpart of the mean) is the standard deviation. The standard deviation tells you approximately how far on the average a score is from the mean. It is equal to the square
root of the average squared deviations of scores in the distribution about the mean.

For reasons that need not concern us here, the average of the squared deviations about the mean involves division by \(N - 1 \) rather than \(N \) so as to provide an unbiased estimate of the population standard deviation based on the sample. The standard deviation of a population is symbolized as \(\sigma \) (Greek letter sigma); the standard deviation of a sample of scores is indicated as \(SD \) when appearing in text, but it is often symbolized as \(s \) in statistical formulas. The variance, a measure of dispersion that is important in the calculation of various inferential statistics, is the square of the standard deviation, that is, \(s^2 \).

Measures of variability for the two vocabulary groups are

<table>
<thead>
<tr>
<th></th>
<th>College</th>
<th>Older Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>23–62</td>
<td>32–83</td>
</tr>
<tr>
<td>Variance ((s^2))</td>
<td>109.45</td>
<td>150.44</td>
</tr>
<tr>
<td>Standard deviation ((SD) or (s))</td>
<td>10.46</td>
<td>12.27</td>
</tr>
</tbody>
</table>

Note that the stem-and-leaf display showed greater dispersion among the older adults; with the \(SD \) we have a number to reflect that characteristic of the distribution.

Standard Error of the Mean In doing inferential statistics, we use the sample mean (\(\bar{X} \)) to estimate (or infer) the population mean (\(\mu \)). It is often helpful to be able to determine how much error there is in estimating \(\mu \) on the basis of \(\bar{X} \). The central limit theorem in mathematics tells us that if we draw an infinite number of samples of the same size and we compute \(\bar{X} \) for each of these samples, the mean of these samples means (\(\mu_{\bar{X}} \)) will be equal to the population mean (\(\mu \)), and the standard deviation of the sample means will be equal to the population standard deviation (\(\sigma \)) divided by the square root of the sample size (\(N \)). The standard deviation of this theoretical sampling distribution of the mean is called the **standard error of the mean** (\(\sigma_{\bar{X}} \)) and is defined as

\[
\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}
\]

Typically, we do not know the standard deviation of the population, so we estimate it using the sample standard deviation (\(s \)). Then we may obtain an **estimated standard error of the mean** using the formula

\[
s_{\bar{X}} = \frac{s}{\sqrt{N}}
\]

Small values of \(s_{\bar{X}} \) suggest that we have a good estimate of the population mean, and large values of \(s_{\bar{X}} \) suggest that we have only a rough estimate of the population mean. The formula for the standard error of the mean indicates that our ability to estimate the population mean on the basis of a sample depends on the size of the sample (large samples lead to better estimates) and on the variability in the population from which the sample was drawn, as estimated by the sample standard deviation (the less variable the scores in a population, the
better our estimate of the population mean will be). As we will show later, the standard error of the mean plays an important role in the construction of confidence intervals and is frequently displayed along with sample means in a figure summarizing results of a research study.

Measures of Effect Size When we do an experiment, we are interested in determining whether the independent variable had an effect and, if it did, how much of an effect there was. The concept of effect size was introduced in Chapter 6. Measures of effect size, or what are more generally called measures of “effect magnitude” (see Kirk, 1996), are important because they provide information about the strength of the relationship between the independent variable and the dependent variable that is independent of sample size (see, especially, Grissom & Kim, 2005).

One commonly used measure of effect size in experimental research when comparisons are made between two means is called Cohen’s d. It is a ratio that measures the difference between the means for the levels of the independent variable divided by the within-group standard deviation. Remember that the standard deviation tells us approximately how far, on the average, scores vary from a group mean. It is a measure of the “dispersal” of scores around a mean and, in the case of the within-group standard deviation, tells us about the degree of “error” due to individual differences (i.e., how individuals vary in their responses). The standard deviation serves as a useful metric to assess a difference between means. That is, the “size” of the effect of the independent variable (the difference between group means for the independent variable) is always in terms of the average amount of dispersal of scores occurring in an experiment.

The effect size measure, d, defined as the difference between sample means divided by the common population standard deviation, is called Cohen’s d after the late statistician Jacob Cohen (see Cohen, 1988, for more information about d).

$$\text{Cohen’s } d = \frac{\bar{X}_1 - \bar{X}_2}{\sigma}$$

The population standard deviation (σ) is obtained by pooling the within-group variability across groups and dividing by the total number (N) of scores in both groups. A formula for the common population standard deviation using sample variances is

$$\sigma = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{N}}$$

where

- n_1 = sample size of Group 1
- n_2 = sample size of Group 2
- s_1^2 = variance of Group 1
- s_2^2 = variance of Group 2
- $N = n_1 + n_2$
If there is a lot of within-group variability (i.e., the within-group standard deviation is large), the denominator for d is large. To be able to observe the effect of the independent variable, given this large within-group variability, the difference between two group means must be large. When the within-group variability is small (the denominator for d is small), the same difference between means will reflect a larger effect size. Because effect sizes are presented in standard deviation units, they can be used to make meaningful comparisons of effect sizes across experiments using different dependent variables. For example, an effect size from a study of vocabulary knowledge that compared college students and older adults on tests emphasizing discrimination of word meanings (i.e., multiple-choice tests) and an effect size from a study contrasting performance of two similar groups using recall of word definitions could be directly compared. Such comparisons form the bases of meta-analyses, which seek to summarize the effect of a particular independent variable across many different studies (see Chapter 6).

There are some guidelines to help us interpret d ratios. J. Cohen (1992) provided a useful classification of effect sizes with three values—small, medium, and large. Each of the classes of effect size can be expressed in quantitative terms; for example, a medium effect for a two-group experiment is a d of .50; a small and large effect are ds of .20 and .80, respectively. These expressions of effect magnitude are especially useful when comparing results from similar studies.

It is important to note that researchers define the standardized difference between means in slightly different ways (see, for example, Cohen, 1988; Kirk, 1996; Rosenthal, 1991). Which measure of effect size to use is a decision left up to the investigator. But, given the differences in measures appearing in the psychology literature, it is very important to identify in a research report precisely how a measure of effect size was calculated.

An effect size for the vocabulary study using Cohen’s d is

$$d = \frac{\bar{X}_1 - \bar{X}_2}{\sigma} = \frac{64.04 - 45.58}{\sqrt{(26 - 1)(150.04) + (26 - 1)(109.45)}} = 1.65$$

To interpret the value of 1.65, we can use J. Cohen’s (1992) classification of effect sizes of $d = .20$ for a small effect size, $d = .50$ for a medium effect size, and $d = .80$ for a large effect size. Because our value is larger than .80, we can conclude that “age” had a large effect on vocabulary knowledge.

Conclusion In the second, summary stage of data analysis, we should identify

(a) the central tendency (e.g., mean) of each condition or group in the study;
(b) measures of dispersion (variability), such as the standard deviation, for each condition of the study;
(c) the effect size for each of the major independent variables; and
(d) how to best present pictorial summaries of the data (e.g., figure showing mean performance across conditions).

Note: Although a graph showing mean performance in the two groups of the vocabulary study could be drawn, a figure usually is not needed when only two group means are involved. Pictorial summaries become more important when summarizing the results of studies with more than two groups.

Stage 3: Using Confidence Intervals to Confirm What the Data Reveal

- An important approach to confirming what the data are telling us is to construct confidence intervals for the population parameter, such as a mean or difference between two means.

In the third stage of data analysis we seek to confirm impressions of the evidence obtained from when we familiarized ourselves with the data and obtained summary measures. A major approach in this third stage is the calculation of a **confidence interval for a population parameter**. A confidence interval (CI) may be calculated for a single population mean or a difference between population means. We first review the use of confidence intervals for one population mean. Then we introduce confidence intervals for the difference between two population means and discuss the interpretation of intervals when there are three or more means.

Confidence intervals may already be familiar to you under a different name. Have you heard reports in the media of survey results based on a sample of respondents? And with these reports have you sometimes heard a “margin of error” presented? In Box 11.2 we review the concept of margin of error and its relation to a confidence interval.

Confidence Intervals for a Single Mean The mean of a random sample from a population is a point estimate of the population mean. However, we can expect variability among sample means from one situation to another due to random variation. The estimated standard error of the mean (sX) provides information about the “normal” range of sampling error. In computing a confidence interval we specify a range of values that we state with a certain degree of confidence includes the population mean. As you may suspect, the larger the interval we specify, the greater our confidence that the mean will be included; but larger intervals give us less specific information about the exact value of the population mean. As a compromise, researchers have agreed that the 95% confidence interval and the 99% confidence interval are the best intervals to use when an interval estimate of the population mean is desired.

The confidence interval is centered about our point estimate (X̄) of the population mean, and the boundaries of the 95% confidence interval can be calculated using the following formulas:

- Upper limit of 95% confidence interval: X̄ + [t0.05]sX
- Lower limit of 95% confidence interval: X̄ − [t0.05]sX
As you learned in Chapter 5, survey research relies heavily on sampling. Survey research is conducted when we would like to know the characteristics of a population (e.g., preferences, attitudes, demographics), but often it is impractical to survey the entire population. Responses from a sample are used to describe the larger population. Well-selected samples will provide good descriptions of the population, but it is unlikely that the results for a sample will describe the population exactly. For example, if the average age in a classroom of 33 college students is 26.4, it is unlikely that the mean age for a sample of 10 students from the class will be exactly 26.4. Similarly, if it were true that 65% of a city’s population favor the present mayor and 35% favor a new mayor, we wouldn’t necessarily expect an exact 65:35 split in a sample of 100 voters randomly selected from the city population. We expect some “slippage” due to sampling, some “error” between the actual population values and the estimates from our sample. At issue, then, is how accurately the responses from the sample represent the larger population.

It is possible to estimate the margin of error between the sample results and the true population values. Rather than providing a precise estimate of a population value (e.g., “65% of the population prefer the present mayor”), the margin of error presents a range of values that are likely to contain the true population value (e.g., “between 60% and 70% of the population prefer the present mayor”). What specifically is this range?

The margin of error provides an estimate of the difference between the sample results and the population values due simply to chance or random factors. The margin of error gives us the range of values we can expect due to sampling error—remember that we expect some error; we don’t expect to describe the population exactly. Let us assume that a poll of many voters is taken and a media spokesperson gives the following report: “Results indicate that 63% of those sampled favor the incumbent, and we can say with 95% confidence that the poll has a margin of error of 5%.” The reported margin of error with the specified level of confidence (usually 95%) indicates that the percentage of the actual population who favor the incumbent is estimated to be found in the interval between 58% and 68% (5% is subtracted from and added to the sample value of 63%). It’s important to remember, however, that we usually don’t know the true population value. The information we get from the sample and the margin of error is the following: 63% of the sample favor the incumbent, and we are 95% confident that if the entire population were sampled, between 58% and 68% of the population would favor the incumbent. This can be represented on a graph by plotting the value obtained for the sample (63%), with error bars representing the margin of error. Figure 11.1 displays error bars around the sample estimate.

Margins of error are routinely included in media reports of national surveys. The goal of these surveys is to tell you with a “margin of error” what the true population value likely is. Similarly, the goal of many scientific studies is to tell you the margin of error, now usually called a confidence interval, for an estimate of a population value.

FIGURE 11.1 Error bars are used to represent the margin of error for the estimate of the population value.
We have already described procedures for computing the sample mean (\bar{X}) and the estimated standard error of the mean ($s_{\bar{X}}$). The unfamiliar symbols in the two equations for the limits of the 95% confidence interval are t and .05.

We briefly discussed the alpha (α) level of .05 in Chapter 6. It is typically associated with inferential tests of statistical significance (i.e., NHST), and we will have much more to say about alpha levels in Chapter 12. In the case of confidence intervals, $\alpha = (1 - \text{level of confidence})$ is expressed as a proportion. So, for the 95% confidence interval, $\alpha = (1 - .95) = .05$ and for the 99% confidence interval, $\alpha = (1 - .99) = .01$.

The t statistic included in the equation is defined by the number of degrees of freedom, and the statistical significance of t can be determined by looking in Appendix Table A.2. For a single sample mean, the degrees of freedom are $N - 1$. You will learn more about the t statistic in Chapter 12 when we discuss NHST. At this point let us simply concentrate on the calculation and proper interpretation of a confidence interval using the above formulas.

An example will illustrate how we obtain a confidence interval for a single mean. Suppose you obtained a random sample of students at a university and measured their intelligence using a brief but valid and reliable measure of this construct. Assume 30 students ($N = 30$) were tested and the mean intelligence score was 115 with a sample standard deviation of 14. The population of students is represented by the thousands of students attending the university. And while the sample mean is a good point estimate of the population mean (i.e., our best guess of the population mean), we must acknowledge that if another random sample of 30 students were selected and tested the sample mean would not likely be exactly 115. There will be some slippage, or “error,” due to this random process. Recall that the standard error of the mean is one measure of the error in estimation.

Rather than rely simply on a point estimate (\bar{X}) of the population mean (μ), we can obtain an interval estimate by finding the 95% confidence interval for the population mean using the formulas presented earlier. We first calculate the estimated standard error of the mean:

$$s_{\bar{X}} = \frac{s}{\sqrt{N}} = \frac{14}{\sqrt{30}} = \frac{14}{5.48} = 2.55$$

Next, we obtain the critical t value. Because there were 30 students in the sample, the degrees of freedom associated with the t statistic are $30 - 1$ or 29. Using Table A.2 we can find that the value of t with alpha of .05 and 29 degrees of freedom is 2.04. Using the formulas for the confidence interval, we have

Upper limit of 95% confidence interval = $115 + [2.04][2.55]$
Lower limit of 95% confidence interval = $115 - [2.04][2.55]$

Upper limit = $115 + 5.20 = 120.20$
Lower limit = $115 - 5.20 = 109.80$

We may state that there is a .95 probability that the interval 109.80 to 120.20 contains (“has captured”) the population mean (see Box 11.3).
CHAPTER 11: Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation

359

Having calculated the .95 confidence interval for a population mean we may state that the odds are 95/100 that the obtained confidence interval contains the true population mean.

The confidence interval either does or does not contain the true mean (e.g., Mulaik, Raju, & Harshman, 1997). A .95 probability associated with the confidence interval for a mean refers to the probability of capturing the true population mean if we were to construct many confidence intervals based on different random samples of the same size. That is, confidence intervals around the sample mean tell us what happens if we were to repeat this study under the same conditions (e.g., Estes, 1997). In 95 of 100 replications we would expect to capture the true mean with our confidence intervals.

Having calculated the 95% confidence interval for a population mean we should NOT state that the odds are 95/100 that the true mean falls in this interval.

This statement may seem to be identical to the statement above. It isn’t. Keep in mind that the value in which we are interested is fixed, a constant; it is a population characteristic or parameter. Intervals are not fixed; they are characteristics of sample data. Intervals are constructed from sample means and measures of dispersion that are going to vary from study to study and, consequently, so do confidence intervals.

Howell (2013) provides a nice analogy to help understand how these facts relate to our interpretation of confidence intervals. He suggests we think of the parameter (e.g., the population mean) as a stake and confidence intervals as rings. From the sample data the researcher constructs rings of a specified width that are tossed at the stake. When the 95% confidence interval is used, the rings will encircle the stake 95% of the time and will miss it 5% of the time. “A confidence statement is a statement of the probability that the ring has been on target; it is not a statement of the probability that the target (parameter) landed in the ring” (Howell, 2013, p. 194).

Box 11.3
INTERPRETING CONFIDENCE INTERVALS FOR A SINGLE MEAN: RINGS AND STAKES

Having calculated the .95 confidence interval for a population mean we may state that the odds are 95/100 that the obtained confidence interval contains the true population mean.

The confidence interval either does or does not contain the true mean (e.g., Mulaik, Raju, & Harshman, 1997). A .95 probability associated with the confidence interval for a mean refers to the probability of capturing the true population mean if we were to construct many confidence intervals based on different random samples of the same size. That is, confidence intervals around the sample mean tell us what happens if we were to repeat this study under the same conditions (e.g., Estes, 1997). In 95 of 100 replications we would expect to capture the true mean with our confidence intervals.

Having calculated the 95% confidence interval for a population mean we should NOT state that the odds are 95/100 that the true mean falls in this interval.

The narrower the interval, the better is our interval estimate of the population mean. You can see by examining the formulas for the upper and lower limits that the width of the interval depends on both the \(t \) statistic and the standard error of the mean. Both of these values are related to sample size such that each decreases as sample size increases; however, increases in sample size have the most effect on the standard error. Consider that doubling the sample size in the above example would produce a standard error of 1.81 (14/\(\sqrt{60} \)) and consequently a much narrower confidence interval. The bottom line: Increasing sample size will improve the interval estimate of the mean.

Confidence Intervals for a Comparison Between Two Independent Group Means

The procedure and logic for constructing confidence intervals for a difference between means is similar to that for setting confidence intervals for a single mean. Because our interest is now in the difference between the population means (i.e., “the effect” of our independent variable) we substitute \(\bar{X}_1 - \bar{X}_2 \) for \(\bar{X} \) and use the estimated standard error of the difference between means. The
95% confidence interval for the difference between two population means is defined as

\[Cl(95\%) = (\bar{X}_1 - \bar{X}_2) \pm (t_{0.5})(s_{\bar{X}_1 - \bar{X}_2}) \]

where \(t \) is found in Table A.2 with degrees of freedom equal to \([(n_1 + n_2) - 2]\) at alpha = .05.

The estimated standard error of the difference between means is defined as

\[s_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \cdot \left[\frac{1}{n_1} + \frac{1}{n_2} \right] \]

As an illustration, let us calculate the confidence limits for the difference between the two means in our example vocabulary research study. The critical \(t \) value for alpha set at .05 is found in Table A.2 with degrees of freedom equal to \(26 + 26 - 2 \), or 50. This value is 2.009. We can obtain the estimated standard error of the difference between two means by

\[s_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{(26 - 1)109.45 + (26 - 1)150.44}{26 + 26 - 2}} \cdot \left[\frac{1}{26} + \frac{1}{26} \right] = 3.16 \]

Therefore, the 95% confidence interval for the population mean difference is

\[Cl(95\%) = 18.46 \pm (2.009)(3.16) \]

\[= 18.46 \pm 6.35 \]

Thus, the upper limit is \(18.46 + 6.35 = 24.81 \), and the lower limit is \(18.46 - 6.35 = 12.11 \). Thus, we have .95 confidence that the interval 12.11 to 24.81 contains the true population difference for percentage correct on the vocabulary test when comparing older adults and college students. Note that the value of zero (0.0) is not within the interval. This is important when interpreting confidence intervals for the difference between two means (see Box 11.4). If the value of zero is within the interval, then zero is a “plausible” value for the true difference between two means (Cumming & Finch, 2005). In Chapter 13 we show you how to report an analysis based on confidence intervals in the Results section of your research report.

Confidence Intervals for a Comparison Between Two Means in a Repeated Measures Design

Thus far we have considered experiments involving two independent groups of subjects. As you are aware, experiments also can be carried out by having each subject participate in each condition of the experiment or by “matching” subjects on some measure related to the dependent variable (e.g., IQ scores, weight). Such experiments are called matched groups designs, within-subjects designs, or repeated measures designs (see Chapter 7). For example, suppose a cognitive psychologist wants to compare people’s performance on two different puzzles. Rather than asking two different groups of people to work on each puzzle, she might ask just one group of people to work on both puzzles. (Procedures for presenting materials in a repeated measures design
CHAPTER 11: Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation

361

Having calculated a 95% confidence interval for the difference between two means, we can state that

the odds are 95/100 that the obtained confidence interval contains the true population mean difference or absolute effect size.

The width of the confidence interval provides information about effect size. By using confidence intervals we obtain information about the probable effect size of our independent variable. Obtained effect sizes vary from study to study as characteristics of samples and procedures differ (see, for example, Grissom & Kim, 2005). The confidence interval “specifies a probable range of magnitude for the effect size” (Abelson, 1997, p. 130). It indicates that the effect size likely could be as small as the value of the lower boundary and as large as the value of the upper boundary. Researchers are sometimes amazed to see just how large an interval is needed to specify an effect size with a high degree of confidence (e.g., Cohen, 1995). Thus, the narrower the width of the confidence interval, the better job we have done at estimating the true effect size of our independent variable. Of course, the size (width) of the confidence interval is directly related to sample size. By increasing sample size we get a better idea of exactly what our effect looks like.

It is important to determine if the confidence interval for a mean difference includes the value of zero. When zero is included in the confidence interval, we must accept the possibility that the two population means do not differ. Thus, we cannot conclude that an effect of the independent variable is present. Remember, confidence intervals give us a probable range for our effect. If zero is among the probable values, then we should admit our uncertainty regarding the presence of an effect (e.g., Abelson, 1997). You will see in Chapter 12 that this situation is similar to that when a nonsignificant result is found using NHST.

BOX 11.4

INTERPRETING CONFIDENCE INTERVALS FOR A DIFFERENCE BETWEEN TWO MEANS: LOOKING FOR ZERO

Having calculated a 95% confidence interval for the difference between two means, we can state that

the odds are 95/100 that the obtained confidence interval contains the true population mean difference or absolute effect size.

The width of the confidence interval provides information about effect size. By using confidence intervals we obtain information about the probable effect size of our independent variable. Obtained effect sizes vary from study to study as characteristics of samples and procedures differ (see, for example, Grissom & Kim, 2005). The confidence interval “specifies a probable range of magnitude for the effect size” (Abelson, 1997, p. 130). It indicates that the effect size likely could be as small as the value of the lower boundary and as large as the value of the upper boundary. Researchers are sometimes amazed to see just how large an interval is needed to specify an effect size with a high degree of confidence (e.g., Cohen, 1995). Thus, the narrower the width of the confidence interval, the better job we have done at estimating the true effect size of our independent variable. Of course, the size (width) of the confidence interval is directly related to sample size. By increasing sample size we get a better idea of exactly what our effect looks like.

It is important to determine if the confidence interval for a mean difference includes the value of zero. When zero is included in the confidence interval, we must accept the possibility that the two population means do not differ. Thus, we cannot conclude that an effect of the independent variable is present. Remember, confidence intervals give us a probable range for our effect. If zero is among the probable values, then we should admit our uncertainty regarding the presence of an effect (e.g., Abelson, 1997). You will see in Chapter 12 that this situation is similar to that when a nonsignificant result is found using NHST.

were described in Chapter 7.) All the participants would then provide a score on both puzzles. The difference between their scores serves as the measure of interest in a repeated measures design.

Procedures for assessing effect size in a matched groups or repeated measures design are somewhat more complex than those we reviewed for an independent groups design (see Cohen, 1988; and Rosenthal & Rosnow, 1991, for information pertaining to the calculation of d in these cases). One suggestion is to calculate an effect size measure as if the study were an independent groups design and apply Cohen’s guidelines (i.e., .20, .50, .80) as before (e.g., Zechmeister & Posavac, 2003; see also Howell, 2013, pp. 203–204).

Confidence intervals, too, can be constructed for the population mean difference in a repeated measures design involving two conditions. However, the underlying calculations change for this situation. Specifically, when each subject is in both conditions of the experiment, t is based on difference scores (see Chapter 12). A difference score is obtained by subtracting the two scores provided by each subject. The mean of the difference scores (“D bar”) is defined as

$$D = \frac{\Sigma D}{N}$$

where D = a difference score and N is the number of difference scores (i.e., number of pairs of scores). Note that $D = X_1 - X_2$.
The estimated standard error of the difference scores \((S_D)\) is defined as

\[
s_D = \frac{s_D}{\sqrt{N}} \quad \text{where } s_D \text{ is the standard deviation of difference scores}
\]

Critical values of \(t\) are obtained by consulting Appendix Table A.2 with degrees of freedom equal to \(N - 1\). Note that in this case \(N\) refers to the number of participants or pairs of scores in the experiment.

The confidence interval for the difference between two means in a repeated measures design can be defined as

\[
CI = \bar{D} \pm (t_{a.5}) (S_D)
\]

Confidence Intervals for a Comparison Among Several Independent Group Means

To illustrate the use of confidence intervals to analyze and interpret results when there are more than two means, we consider a study on how infants “grasp the nature of pictures” (DeLoache, Pierroutsakos, Uttal, Rosengren, & Gottlieb, 1998). Have you ever wondered whether infants understand that a picture of an object is not the same thing as the object itself? DeLoache and her colleagues were intrigued by research demonstrating that infants as young as 5 months seem to recognize the similarity between objects and their pictures, but also seem to recognize they’re not the same. However, these research findings do not correspond well to anecdotes of infants’ behavior toward pictures in which infants and young children try to grasp or pick up the objects represented in pictures, and even try to step into a picture of a shoe! These anecdotal reports suggest that infants and children treat pictured objects as if they are real objects, despite the two-dimensional representation in the picture. In four studies, DeLoache et al. examined “to what extent infants would treat depicted objects as if they were real objects” (p. 205).

We will focus on the results of the fourth study carried out by DeLoache et al. (1998). In the first three studies the researchers found that

- a large majority of 9-month-old infants, when exploring a picture book with “eight highly realistic color photographs of individual objects (common plastic toys),” tried to grasp a pictured object at least once (the average was 3.7 attempts) (Study 1);
- infants’ grasping at pictures was not because the infants could not discriminate between two- and three-dimensional objects (Study 2); and
- “Beng infants from severely impoverished and largely nonliterate families living in a rural village in the West African nation of Côte d’Ivoire (Ivory Coast)” manually explored and grasped at the pictures (including pictures of objects common in the Beng community) in the same way as American infants (Study 3). (See Figure 11.2.)

The purpose of the fourth study was to determine how children’s behavior toward pictures changes with age.
Three age groups were tested: 9-month-olds, 15-month-olds, and 19-month-olds. Each group had 16 children, 8 girls and 8 boys. In addition to observing children’s behaviors of investigating the pictures with their hands (grasping and other investigative behaviors), the researchers coded instances of pointing at pictured objects. Their results for infants’ investigative behaviors are shown in Figure 11.3.
The independent variable, age of the children, is a natural groups design with three levels: 9 months, 15 months, and 19 months. This variable appears on the horizontal axis (x-axis). The dependent variable was number of investigative behaviors, and the mean number of these behaviors appears on the vertical axis (y-axis). As you can see in Figure 11.3, the mean number of investigative behaviors is highest for 9-month-olds, and much lower for 15-month-olds and 19-month-olds. The other important piece of information in the figure is the “bars” that surround each mean. We can use these bars to make decisions about whether there was an effect of the independent variable, age.

The bars around each mean in Figure 11.3 represent confidence intervals. As you have learned, confidence intervals tell us about the range of values we can expect for a population value. We cannot estimate the population value precisely because of sampling error, but we can estimate a range of probable values. The smaller the range of values expressed in our confidence interval, the better is our estimate of the population value. Each of the bars in Figure 11.3 represents a 95% confidence interval. However, the calculation of this interval in a multigroup study differs slightly from that when only one mean is present. Specifically, when calculating the estimated standard error of the mean, we may make use of the pooled variance from all the groups in the study. Let us illustrate.

The formula for the 95% confidence interval is the same as it was when there was only one mean:

Upper limit of 95% confidence interval: $\bar{X} + [t_{0.5}]\frac{s_{\overline{X}}}{\sqrt{n}}$
Lower limit of 95% confidence interval: $\bar{X} - [t_{0.5}]\frac{s_{\overline{X}}}{\sqrt{n}}$

However, the calculation of $s_{\overline{X}}$ differs from that with one mean; so, too, does the calculation of the degrees of freedom for the critical value of t. To estimate the standard error of the mean, we may pool the variances from the various groups to obtain one measure of variability. In this case we pool the information from as many groups as we have in the study. When the comparison involves two or more means from independent groups, the estimated standard error of the mean is calculated as follows. First, we find the standard deviation based on the pooled variance:\[
s_{\text{pooled}} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \cdots + (n_k - 1)s_k^2}{(n_1 - 1) + (n_2 - 1) + \cdots + (n_k - 1)}}
\]

When sample sizes are equal, the estimated standard error is then defined as

$s_{\overline{X}} = \frac{s_{\text{pooled}}}{\sqrt{n}}$ where n = sample size for each group

Degrees of freedom are then calculated as $k(n - 1)$, where k is equal to the number of independent groups.

\[1\text{The pooled estimate of the population standard deviation is equivalent to the square root of the mean square error in a between-groups analysis of variance (ANOVA). That is, } s_{\text{pooled}} = \sqrt{M\text{Serror. See Chapter 12 for discussion of ANOVA.}\]
Looking again at Figure 11.3, we can see that for 9-month-olds, the mean number of investigative behaviors for the sample was 4.75. The expression \(t_{0.05} \) \([s_x] \) in the equation for the 95% confidence interval in this analysis is 1.14. We can be 95% confident that the interval between 3.61 and 5.89 (4.75 ± 1.14) contains the population mean for 9-month-olds. Thus, the sample of 16 nine-month-old infants in this study is used to estimate the average number of investigative behaviors that would be demonstrated if the larger population of 9-month-olds were tested in this situation. For 15-month-olds, the mean number of investigative behaviors was 1.63, and we can be 95% confident that the interval between .49 and 2.77 (1.63 ± 1.14) contains the population mean. The sample mean for 19-month-olds was .69, and the 95% confidence interval has a lower bound of 0.0 (restricted by the range of permissible values) and an upper bound of 1.83 (.69 ± 1.14).

Box 11.5 provides information about how to interpret confidence intervals when there are three or more means.

A final word of caution is necessary when examining “bars” drawn in graphs of research results. Bars presented in graphs of data in journal articles sometimes represent confidence intervals, but may also represent the standard error of the mean or standard deviations (Cumming & Finch, 2005). (A quick technique for

BOX 11.5

INTERPRETING CONFIDENCE INTERVALS WHEN THERE ARE THREE OR MORE MEANS: DO INTERVALS OVERLAP?

In many research situations, we are not really interested in estimating the specific value of the population mean. For example, we aren’t really interested in knowing the average number of times 9-month-olds can be expected to grasp at pictures. Instead, we are interested in the pattern of population means and comparing the relationships among population means (Loftus & Masson, 1994). That is, we wish to be able to compare the behavior of different groups. This, too, can be accomplished using confidence intervals. Consider once again the data from DeLoache et al.’s study.

We can use our estimates of the population means to ask: Do infants in the different age groups demonstrate different amounts of investigative behaviors? To answer this question we can examine the overlap of the 95% confidence intervals in Figure 11.3. Remember, the confidence interval is associated with a probability (e.g., .95) that the interval contains the population mean; the width of the interval tells us how precise is our estimate. We want to keep in mind that confidence intervals are intended to provide information about how well we have estimated a population value, usually a mean. Confidence intervals are not statistical tests like the \(t \)-test or \(F \)-test, where the emphasis is on comparing directly two or more means to see if the differences are “statistically significant.” Nevertheless, as we stated previously, researchers often are interested in the pattern of population means, and we can use confidence intervals to help us detect these patterns.

When the intervals do not overlap, we can be confident that the population means differ. Non-overlapping intervals tell us that the population means estimated by the sample means are probably not the same. For example, the 95% confidence interval for 9-month-olds does not overlap with the interval for 15-month-olds. From this we
can conclude that infants who are 9 months old differ from those who are 15 months old in the number of investigative behaviors made when looking at pictures. (Examination of the sample means shows that the 9-month-olds investigate pictures more than the 15-month-olds.) A similar conclusion can be made when comparing intervals for 9-month-olds and 19-month-olds. A different conclusion must be made when comparing the intervals for 15-month-olds and 19-month-olds. Figure 11.3 demonstrates that the intervals for these two groups overlap. What should we now conclude? If intervals overlap slightly, then we must acknowledge our uncertainty about the true mean difference and postpone judgment. If the intervals overlap such that the sample mean of one group lies within the interval of another group, we may conclude that the population means do not differ (see Zechmeister & Posavac, 2003). Cumming and Finch (2005) provide a more precise analysis of the interpretation given to overlapping intervals based on proportion overlap.

Given these guidelines, what might we conclude about the difference between 15-month-olds and 19-month-olds observed in Figure 11.3? As can be seen in the figure, the 95% intervals overlap such that the confidence interval for the 15-month-olds contains the sample mean for the 19-month-olds. Thus, we can suggest that the population means do not differ. Even though the sample means differ (1.63 and .69, respectively), we cannot conclude that the population means differ (and in psychological research we are more interested in describing the population than the sample). For example, given the overlap of intervals seen in Figure 11.3, it is possible that the true population mean for the children who are 15 months old is really .69 (which is the sample mean of those who are 19 months old). Based on the means and confidence intervals presented in Figure 11.3, we may conclude that 9-month-old infants investigate pictures with their hands more than 15-month-olds and 19-month-olds, and that these two older groups do not differ in the amount of investigative behavior they demonstrate. Note that we do not say that there is no possibility of a difference between the two older groups (populations). Given these data, we cannot say that a difference is present; however, the data also do not tell us with certainty that no difference is present. We must wait until more research is done, perhaps using larger sample sizes in order to obtain more precise estimates of the population means.

DeLoache et al.’s data for infants’ pointing at pictures are presented in Figure 11.4. What conclusions can you draw based on the means and confidence intervals presented in this figure? Do 15-month-old infants differ from 9-month-old infants in their pointing behavior? Why or why not? Do 19-month-old infants differ from 15-month-old infants? Why or why not?

FIGURE 11.4 Mean number of pointing behaviors with 95% confidence intervals for 9-month-olds, 15-month-olds, and 19-month-olds. (From DeLoache et al., 1998; used with permission.)

![Mean Number of Pointing Behaviors
95% Confidence Intervals](image)

approximating 95% confidence intervals is to multiply the standard error of the mean by 2.) To complicate matters further, authors sometimes fail to inform readers what is presented. When bars are presented, it is important to inform readers what they represent and how they were calculated (Estes, 1997).
CHAPTER 11: Data Analysis and Interpretation: Part I. Describing Data, Confidence Intervals, Correlation

Illustration: Data Analysis for a Correlational Study

- A correlation exists when two different measures of the same people, events, or things vary together—that is, when scores on one variable covary with scores on another variable.

Prediction, as you saw in Chapter 2, is an important goal of the scientific method. Correlational research frequently provides the basis for this prediction. A correlation exists when two different measures of the same people, events, or things vary together—that is, when scores on one variable covary with scores on another variable. For example, a widely known relationship exists between smoking and lung disease. The more individuals smoke (e.g., measured by duration of smoking), the greater their likelihood of contracting lung disease. Thus, smoking and lung disease covary, or go together. This correlation also can be expressed in these terms: the less people smoke, the lower their chances for contracting lung disease. Based on this correlation we can make predictions about lung disease. For example, if we know how long an individual has smoked, we can predict (to some degree) his or her likelihood of developing lung disease. The nature of our predictions and the confidence we have in making them depend on the direction and the strength of the correlation.

Correlational analyses are frequently associated with survey research (see Chapter 5). Respondents complete questionnaires asking about demographic variables (e.g., age, income), as well as their attitudes, opinions, and psychological well-being. A researcher then seeks to show how various responses are related, that is, how they are correlated. Do people who claim to have low

StRETCHING EXERCISE

A Test of Your Understanding of Confidence Intervals

Confidence intervals do share some of the problems of interpretation frequently associated with tests of statistical significance, specifically, with null hypothesis significance testing (NHST). Nevertheless, confidence intervals can and should be incorporated in your data analysis. To make sure you use them correctly, we have provided the following test of your understanding of this analysis technique.

Assume that an independent groups design was used to examine the effect on behavior of an independent variable with three levels (A, B, C). There were 15 participants randomly assigned to each condition, and measures of central tendency and variability were determined for each condition. The investigator also constructed 95% confidence intervals for each of the means. True or false? The researcher may reasonably conclude on the basis of this outcome that

1. The width of the confidence interval indicates how precise is the estimation of the population means.
2. If two intervals overlap, we know for sure that the population means are the same.
3. The odds are 95% that the true population mean falls in each interval.
4. If two intervals do not overlap, there is a 95% probability that the population means differ.
5. If two intervals do not overlap, we have good evidence that the population means differ.
self-esteem also report having difficulty dating? Is length of time children spend in day care related to measures of their attachment to their mothers? Do SAT scores predict success after college?

In what follows we examine how researchers analyze and interpret a correlational study.

Stage 1: Getting to Know the Data

Because there are always two sets of scores in a correlational study and because the relationship between these scores is of primary interest, the stages of data analysis proceed somewhat differently than when a comparison between means is the focus of the study. For purposes of illustration, assume that a researcher is interested in correlating two measures of psychological well-being obtained from self-reports of college students (see Chapter 5 for a discussion of self-report data). Both measures are in the form of 10-point rating scales. One measure is based on the question “How much do you worry about grades?” (1 = not at all, 10 = very much). The second measure is based on the question “How much difficulty do you experience concentrating during class exams?” (1 = not at all, 10 = very much).

Cleaning the Data Each respondent provides two scores, and both sets of scores should be checked carefully for errors such as impossible values (e.g., numbers outside the range of the scale), as well as outliers. A stem-and-leaf display may be used to examine the data in each set. When possible responses are limited, as they typically are when scales are used, outliers are less likely to be present than when there is no limit on a response (e.g., reporting annual income).

Conclusion Only when the investigator is assured that the data contain no errors or values that are likely to distort the findings should the analysis proceed.

Stage 2: Summarizing the Data

• The major descriptive techniques for correlational data are the construction of a scatterplot and the calculation of a correlation coefficient.
• The magnitude or degree of correlation is seen in a scatterplot by determining how well the points correspond to a straight line; stronger correlations more clearly resemble a straight line (linear trend) of points.
• The magnitude of a correlation coefficient ranges from −1.0 (a perfect negative relationship) to +1.0 (a perfect positive relationship); a correlation coefficient of 0.0 indicates no relationship.

Data summary begins by examining descriptive statistics for each set of scores. Then the degree of relationship between these sets of scores is summarized both graphically and numerically.
Central Tendency and Variability Measures of central tendency and variability should be calculated for both sets of scores. The means and standard deviations for the two sets of responses in our hypothetical study are

<table>
<thead>
<tr>
<th></th>
<th>Worry</th>
<th>Concentration difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>5.45</td>
<td>5.30</td>
</tr>
<tr>
<td>SD</td>
<td>1.93</td>
<td>1.98</td>
</tr>
</tbody>
</table>

In a correlational study our primary interest is not in the difference between the means but in the relationship between the sets of scores. The major descriptive techniques for correlational data are the construction of a scatterplot and the calculation of a correlation coefficient. A scatterplot describes the relationship between the two sets of scores.

Drawing a Scatterplot Each individual has a value (or score) for each variable (e.g., ratings of worry and concentration difficulty). Scores for the two variables are represented on the x-axis and y-axis. A scatterplot shows the intersecting points for each pair of scores. The magnitude or degree of correlation is seen in a scatterplot by determining how well the points correspond to a straight line; stronger correlations more clearly resemble a straight line of points. Figure 11.5 shows three different scatterplots. The correlation is stronger in the first (a) and third (c) panels than in the second (b) panel because the points in (a) and (c) more closely approximate a straight line.

Assume that 20 college students provided responses to the two questions we described above. Assume further that the data were carefully inspected for errors and any anomalies and that the data were judged to be clean.

We wish to find out whether scores on one measure are related to (i.e., "go with") scores on the second measure. Is reported worry about grades related to self-reported difficulty concentrating on exams? When constructing a
scatterplot, by convention, the measure of the behavior that “comes first” or that is used to predict the second behavior is placed on the horizontal or \(x \)-axis. The second behavior or that which is predicted by the first is placed on the vertical or \(y \)-axis. In many situations such a decision is easy. If you were correlating volunteers’ blood alcohol levels and a measure of their performance on a driving simulator, we would easily see that alcohol was first consumed and then simulated driving performance was measured. Blood alcohol levels would be used to predict performance on a driving simulator. In other situations the decision is not as easy. Does worry about grades come before difficulty concentrating on exams? Or does difficulty concentrating on exams lead to worry about grades? We believe a case could be made for either.

We next examine the scatterplot for possible trends. More specifically, we look to see if there is evidence of a **linear trend** in the scatterplot. Simply, a linear trend is one that may be summarized by a straight line. As you have seen, scatterplots (a) and (c) in Figure 11.5 show evidence of a linear trend. It is also possible to see no trend in the scatterplot. In this case, scores on one measure are just as likely to go with low, middle, or high scores on the second measure. If there is no discernible trend in the graph, as in the middle panel of Figure 11.5, then we can conclude there is no relationship between the sets of scores. Note that in this case we are not able to use our knowledge of scores on one measure to make predictions about scores on the second measure.

Finally, it is also possible to see a relationship in the scatterplot, but one that is not linear. Figure 11.6 provides two examples of nonlinear relationships between variables. We may judge these relationships to be interesting and even worthy of further investigation; however, a nonlinear relationship poses serious problems of interpretation for a correlation coefficient. Consequently, if the trend in the scatterplot is nonlinear, a correlation coefficient should not be calculated. Outliers in a scatterplot also pose problems when interpreting a correlation coefficient.

Figure 11.7 shows a scatterplot describing the relationship between scores on the worry (\(X \)) and concentration difficulty (\(Y \)) measures from our hypothetical survey. Since we really don’t know in this case which factor “comes first,” we have arbitrarily put the measure of worry on the \(x \)-axis and the measure of concentration difficulty on the \(y \)-axis in the scatterplot found in Figure 11.7. That is,
we are using the measure of worry to predict the measure of concentration. Can you see a trend in the scatterplot? If so, is it generally linear?

The direction of a correlation can be either positive or negative. A positive correlation indicates that as the values for one measure increase, the values for the other measure also increase. This is the relationship shown in Figure 11.7. As scores for worry increase, scores for concentration difficulty also increase. We can predict that the more students worry about their grades, the more difficulty they will have concentrating during exams. With correlations, the reverse prediction also can be made. If we know a person has difficulty concentrating on exams, we can “predict” that he or she is likely to worry about grades.

In a negative correlation, as the value of one measure increases, the value of the other measure decreases [see panel (c) in Figure 11.5]. For example, research shows there is a negative correlation between the amount of time students spend playing video games and measures of academic performance (Anand, 2007). As video game usage increases, grade-point average (GPA) decreases. What about the reverse prediction? Based on this finding, if you know a student has a high GPA, would you predict that the student has spent “a lot” of time or “a little” time playing video games?

Calculating a Correlation Coefficient The direction and strength of a correlation are determined by computing a correlation coefficient. The correlation coefficient is a quantitative index of how well we are able to predict one set of scores (e.g., concentration ratings) using another set of scores (e.g., worry ratings). A
correlation coefficient expresses the relationship between two variables in terms of both the direction and the magnitude of that relationship. The most commonly used correlation coefficient is the Pearson Product-Moment Correlation Coefficient, designated as \(r \). It is easily calculated with an electronic calculator or computer software program. (An Internet search will identify web sites that provide methods for computing a correlation.)

The magnitude (degree) of a correlation coefficient can range in absolute values from 0.0 to 1.00. A value of 0.0 indicates there is no correlation and there is no basis for making predictions. The relationship between intelligence and mental illness, for example, exhibits a zero correlation; we cannot predict the likelihood that a person will become mentally ill by knowing the person’s IQ (nor can we predict a person’s IQ based on his or her mental health). A value of +1.00 indicates a perfect positive correlation, and a value of −1.00 indicates a perfect negative correlation. When a correlation coefficient is either +1.00 or −1.00, all the points in the scatterplot fall on a straight line and we can make predictions with absolute confidence. Values between 0 and 1.00 indicate predictive relationships of intermediate strength and, therefore, we have less ability to predict confidently. Remember, the sign of the correlation signifies only its direction; a correlation coefficient of −.46 indicates a stronger (more predictive) relationship than one of +.20. (Note: In practice, only the sign of negative correlation coefficients is indicated; a coefficient without a plus or minus sign is treated as positive, that is, +.20 = .20.)

The correlation coefficient for the relationship between worry and concentration difficulty based on the 20 students in our hypothetical study is .62. The correlation coefficient provides a quantitative index of what we observed in the scatterplot. We may state that the two variables are positively correlated: the more students worry, the more likely they are to have difficulty concentrating during exams. But can we say that worrying causes students to have difficulty concentrating?

Correlation and Causality As you may recall from our discussion of correlations in Chapters 4 and 5, “correlation does not imply causation.” Knowing that two variables are correlated does not allow us to infer that one causes the other (even if one precedes the other in time). It may be that worry about grades causes concentration difficulty during exams, or that the experience of difficulty while concentrating during exams causes worry about grades. In addition, a spurious relationship exists when a third variable can account for the positive correlation between worry about grades and concentration difficulty during exams. For example, number of hours employed might serve as a third variable that can account for this relationship. As number of hours employed increases, students might experience greater concern about grades and greater difficulty concentrating during exams.

Conclusion A Pearson Product-Moment Correlation Coefficient may be used to summarize the relationship between two variables. It is important, however, to inspect the scatterplot of the two variables prior to calculating a Pearson \(r \) to make sure that the relationship is best summarized with a straight line, that
is, that there is a linear trend. As the correlation coefficient approaches 1.00 (or −1.00), the relationship between the two variables observed in the scatterplot approaches a straight line, and our ability to predict one variable based on knowledge of another increases.

Stage 3: Constructing a Confidence Interval for a Correlation

- We can obtain a confidence interval estimate of the population correlation, \(\rho \), just as we did for the population mean, \(\mu \).

A Pearson \(r \) calculated from a sample is an estimate of the correlation in the population just as a sample mean is an estimate of a population mean (\(\mu \)). The population correlation is symbolized with the Greek letter rho (\(\rho \)). Moreover, just as a sample mean is subject to sampling error or variation from sample to sample, so, too, is a correlation coefficient. Thus, in some situations we may wish to obtain an interval estimate of the population value, \(\rho \), just as we did for the population value, \(\mu \). In other words, we can calculate a confidence interval for \(\rho \). We will leave this topic, however, for books providing more comprehensive treatment of statistical procedures (e.g., Howell, 2013).

Summary

There are three distinct, but related stages of data analysis: getting to know the data, summarizing the data, and confirming what the data reveal. In the first stage we want to become familiar with the data, inspecting them carefully, checking for errors and anomalous values. We want to be particularly sensitive to the presence of outliers, extreme values that just don’t seem to go with the other values. Creating a stem-and-leaf display is a good way to visualize the distribution of numbers in a data set and to detect outliers. In the second stage we want to summarize the data set using descriptive statistics and graphical displays. Measures of central tendency (mean, median, mode) and measures of dispersion or variability (range and standard deviation) are particularly useful at this point. When a study involves the effect of an independent variable on a dependent variable, it is important to describe “how much of an effect” the independent variable had on the dependent variable. Measures of effect size are important when conducting meta-analyses, which summarize the effect of a particular variable across many different studies. An important effect size measure when two means are compared is Cohen’s \(d \).

In the third stage of data analysis, confirming what the data reveal, we determine what we may reasonably claim based on the evidence obtained in our study. There are two complementary approaches to this stage of analysis: null hypothesis significance testing (NHST) and the construction of confidence intervals. Both approaches rely on estimates of sampling variability to help a researcher make decisions about the true values of population parameters. Although the mean of a random sample is a good point estimate of the population mean, there will be variation (“error”) in this estimate from sample to sample due to random or chance factors. The estimated standard error of the
mean assesses how well a sample mean estimates the population mean. NHST focuses the researcher on the probability that the obtained results are “due to chance.” A confidence interval specifies a range of values that have a certain probability (usually 95%) of containing a population value (e.g., the population mean). Confidence intervals are directly analogous to the “margin of error” that you may have heard in media reports of survey results. The narrower the interval, the better is our estimate of the population value; increasing sample size will improve the interval estimate.

Confidence intervals for the difference between two means provide evidence for the difference between the population means represented by the two sample means in a study. The width of the interval yields information concerning the probable effect size of an independent variable. When constructing confidence intervals for a difference between two means, if the interval includes the value of zero, then we do not want to say that an effect is present. In other words, if zero is within the interval, we should admit our uncertainty regarding the effect of the variable. Confidence intervals can be constructed for both independent groups and repeated measures designs.

When there are three or more means, confidence intervals are constructed for each mean. Conclusions about differences between means in a multigroup study are made by examining whether intervals overlap. When intervals do not overlap, we can be confident that the population means estimated by these sample means do in fact differ. However, when intervals overlap, we do not say that there is no difference between population means; rather, we must admit uncertainty about the true difference and wait until more research is done.

A correlational study is frequently carried out when the researcher’s goal is that of prediction, for example, when predicting test performance from a paper-and-pencil measure of test anxiety. A correlation exists when two different measures of the same people, events, or things vary together. Just as we do when a study involves a comparison between means, we should carefully inspect and summarize the data from a correlational study. A scatterplot describes the relationship between two sets of scores; a correlation coefficient produces a quantitative summary of the relationship observed in the scatterplot. More specifically, the correlation coefficient describes how well the data in the scatterplot fit a straight line. The value of a correlation coefficient may vary from −1.00 to +1.00. The sign of the correlation coefficient (− or +) indicates the direction of the relationship; the absolute value of the coefficient (0.0 to 1.00) indicates the magnitude of the relationship. The closer the correlation coefficient approaches 1.00 (positive or negative), the more the points in the scatterplot fall on a straight line, and the stronger is the relationship.

A positive correlation exists when values for one measure increase as values on a second measure increase. In a negative correlation, as values of one measure increase, values on a second measure decrease. Knowing that there is a relationship (correlation) between two measures permits a researcher to predict scores on one measure based on knowledge of scores on a second measure. The closer the correlation coefficient is to 1.00 or −1.00, the better is the ability to
predict. It is important to keep in mind that correlation alone is not evidence for a causal relationship between variables: Correlation does not imply causality.

KEY CONCEPTS

- stages of data analysis 343
- getting to know the data 343
- summarizing the data 343
- confirming what the data reveal 343
- stem-and-leaf display 348
- measures of central tendency 351
 - mode 351
 - median 351
 - mean 352
- measures of dispersion (variability) 352
- range 352
- standard deviation 352
- standard error of the mean 353
- estimated standard error of the mean 353
- confidence interval for a population parameter 356
- scatterplot 369
- linear trend 370
- positive correlation 371
- negative correlation 371

REVIEW QUESTIONS

1. Identify the three major stages of data analysis and indicate what specific things a researcher typically will look to do at each stage.

2. What does a researcher attempt to do when constructing an “analysis story” to go with the results of a study?

3. Why must a researcher have a good knowledge of research methodology and statistical procedures to be able to use computer software to analyze results of a study?

4. Construct a stem-and-leaf display for the following set of numbers; then, report what you have learned by examining the data in this way. 36, 42, 25, 26, 26, 21, 22, 43, 40, 69, 21, 21, 23, 31, 32, 32, 34, 37, 37, 38, 43, 20, 21, 24, 23, 42, 24, 21, 27, 29, 34, 30, 41, 25, 28.

5. Calculate the mean, median, and mode for the following data set: 7, 7, 2, 4, 2, 4, 5, 6, 4, 5. Describe the advantages and disadvantages of the three measures of central tendency: mean, median, mode.

6. The standard deviation for the data set in Question 5 is 1.78. What does this value tell you?

7. What does the estimated standard error of the mean tell you about a sample mean?

8. A study was done to investigate a newly created drug to increase memory performance. The study was done with rats. The dependent measure was number of errors made while learning a maze after being injected with the memory drug or a saline solution (control). Rats were randomly assigned to either the memory-enhancing drug or the control. A total of 30 rats was tested; there were 15 in each group. The mean (and standard deviation) for the drug group was 11.7 (4.7); that of the control group was 15.1 (5.1). (Lower numbers mean better performance.) What is the effect size for this study?

9. Why is a confidence interval also called a “margin of error”?

10. A random sample of 25 students was asked their opinion of the food service in the college dining hall. Students used a 7-point scale (1 = horrible 7 = great) to indicate
their opinion. The mean rating for the 25 students was 4.7 with a standard deviation (s) of 1.2.

A What is the 95% confidence interval for the population mean?

B Describe in words what the confidence interval tells you about the population mean.

11 What is the 95% confidence interval for the difference between the two means reported in Question 8? What is the correct interpretation of this interval?

12 How do you use confidence intervals to reach a conclusion about differences among means in a study with three or more means?

13 When inspecting data depicted in a scatterplot, why is it important to look for a linear trend in the data?

14 A researcher investigates whether there is a relationship between vocabulary size and performance on a reading comprehension test. Each of 15 sixth-grade students is given both a vocabulary test and a reading comprehension test (both tests are scored in terms of percentage correct). The results for the 15 schoolchildren are (with vocabulary scores given first): 44,67; 24,33; 67,45; 75,54; 34,45; 88,79; 57,67; 44,32; 87,95; 77,67; 87,78; 54,67; 90,78; 36,55; 79,91. Draw a scatterplot and calculate a correlation coefficient for these data.

15 Explain whether you could use the correlation you computed in Question 14 to support the claim that increasing vocabulary size causes increases in reading comprehension.

CHALLENGE QUESTIONS

1 A cognitive psychologist investigates the effect of four presentation conditions on the retention of a lengthy passage describing the Battle of Gettysburg. Let us simply denote the presentation conditions as A, B, C, and D. Sixty-four (N = 64) college students are randomly assigned in equal numbers to the four conditions (n = 16). Memory is tested after students hear the passage read aloud one time. The dependent variable is number of idea units recalled in the immediate written recall of the passage. The mean recall and standard deviation for each of the four presentation conditions are

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>16.4</td>
<td>29.9</td>
<td>24.6</td>
<td>19.5</td>
</tr>
<tr>
<td>SD</td>
<td>4.6</td>
<td>7.1</td>
<td>5.9</td>
<td>6.3</td>
</tr>
</tbody>
</table>

A Calculate the 95% confidence intervals for the population means estimated by the four sample means.

B Interpret the pattern of confidence intervals by stating what we may conclude about the differences between the various population means.

2 A developmental psychologist investigates the effect of mothers’ carrying behavior on infant sleep patterns. Specifically, the investigator solicits help from 40 mothers of newborns. The psychologist trains 20 mothers in a carrying method that presses the newborn’s head against the mother’s breast; the other 20 mothers are not instructed in a particular carrying method. All mothers are trained to record the number of hours their newborn sleeps each 24-hour period. Records are kept for 3 months in both groups. The mean 24-hour sleep period for infants in the instructed group was 12.6 (SD = 5.1); in the uninstructed group the mean was 10.1 (SD = 6.3).

A Calculate the 95% confidence interval for the difference between the two means.

B What may be said about the effect of training based on an examination of the confidence interval for this experiment?

C What is the effect size for this experiment? Interpret the effect size measure based on Cohen’s guidelines for small, medium, and large effects.

3 A researcher asks college students to play a demanding video game while listening to classical music and while listening to hip-hop. All of the 10 students in the experiment play the video game for 15 minutes under each of the music conditions. Half of the students play while listening first to classical music and then to hip-hop music; the other half perform with the types of music in the
reverse order (see Chapter 7 for information on counterbalancing in a repeated measures design). The dependent variable is the number of correct “hits” in the game over the 15-minute period. The scores for the 10 students are

<table>
<thead>
<tr>
<th>Student</th>
<th>Classical</th>
<th>Hip-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>69</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>85</td>
</tr>
</tbody>
</table>

A social psychologist seeks to determine the relationship between a paper-and-pencil measure of prejudice and people’s attitudes toward racial profiling as a crime deterrent. At the beginning of the semester, students in a general psychology class are asked to complete six different questionnaires. Among the questionnaires is a measure of prejudice. Later in the semester, students are invited to take part in an experiment examining attitudes about criminal behavior and law enforcement tactics. As part of the experiment, students complete a questionnaire asking about attitudes toward racial profiling as a crime deterrent. The researcher wishes to find out if scores on the prejudice measure obtained earlier will predict people’s attitudes about racial profiling. Higher scores on the prejudice measure indicate greater prejudice, and higher scores on the profiling scale indicate greater support for racial profiling. Scores on both measures are obtained for 22 students as follows:

<table>
<thead>
<tr>
<th>Student</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prejudice</td>
<td>19</td>
<td>15</td>
<td>22</td>
<td>12</td>
<td>9</td>
<td>19</td>
<td>16</td>
<td>21</td>
<td>24</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Profiling</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prejudice</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>19</td>
<td>23</td>
<td>18</td>
<td>11</td>
<td>10</td>
<td>19</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Profiling</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

A Calculate the means for each condition. What trend do you see in the comparison of means?
B Calculate the estimated standard error of the difference scores.
C Find the 95% confidence interval for the difference between the two means in this repeated measures design.
D State a conclusion regarding the effect of type of music on performance given the analysis of these results.

A social psychologist seeks to determine the relationship between a paper-and-pencil measure of prejudice and people’s attitudes toward racial profiling as a crime deterrent. At the beginning of the semester, students in a general psychology class are asked to complete six different questionnaires. Among the questionnaires is a measure of prejudice. Later in the semester, students are invited to take part in an experiment examining attitudes about criminal behavior and law enforcement tactics. As part of the experiment, students complete a questionnaire asking about attitudes toward racial profiling as a crime deterrent. The researcher wishes to find out if scores on the prejudice measure obtained earlier will predict people’s attitudes about racial profiling. Higher scores on the prejudice measure indicate greater prejudice, and higher scores on the profiling scale indicate greater support for racial profiling. Scores on both measures are obtained for 22 students as follows:

A Answer to Stretching Exercise
Statements 1 and 5 are True; 2, 3, and 4 are False.

A Answer to Challenge Question 1

A Begin by calculating s_{pooled} for the four groups, being sure to note that the problem provides the standard deviation for each group and the formula for s_{pooled} makes use of the variances. Thus, each standard deviation must be squared before multiplying by $n - 1$. The value of s_{pooled} is 6.04. The estimated standard error of the mean (s_{X}) is, therefore, $6.04/\sqrt{\bar{n}}$, or 1.51. The critical value of t at the .05 level is 2.00 ($60 df$) from Table A.2. The confidence intervals for the means are

A $16.4 \pm (2.00)(1.51) = 13.38$ to 19.42
B $29.9 \pm (2.00)(1.51) = 26.88$ to 32.92
C 24.6 ± (2.00)(1.51) = 21.58 to 27.62
D 19.5 ± (2.00)(1.51) = 16.48 to 22.52

(B) (Hint: It may be helpful to draw a figure with columns representing the mean performance in each group and bars around the means corresponding to the confidence intervals. You may also want to review the information found in Box 11.5.) It can be seen that the A interval overlaps only the D interval. The C and D intervals overlap. Although the observed pattern of group means is our best estimate of the locations of the population values, the confidence intervals also provide information about the precision of our estimates. On the basis of these data, we may conclude that the population mean estimated by sample mean A differs from the population means represented by B and C. We will want to withhold judgment about the difference between A and D. We may also conclude that population means B and D differ, but admit we are uncertain about the true difference between B and C.
CHAPTER TWELVE

Data Analysis and Interpretation: Part II. Tests of Statistical Significance and the Analysis Story

CHAPTER OUTLINE

OVERVIEW
NULL HYPOTHESIS SIGNIFICANCE TESTING (NHST)
EXPERIMENTAL SENSITIVITY AND STATISTICAL POWER
NHST: COMPARING TWO MEANS
Independent Groups
Repeated Measures Designs
STATISTICAL SIGNIFICANCE AND SCIENTIFIC OR PRACTICAL SIGNIFICANCE
RECOMMENDATIONS FOR COMPARING TWO MEANS
REPORTING RESULTS WHEN COMPARING TWO MEANS
DATA ANALYSIS INVOLVING MORE THAN TWO CONDITIONS
ANOVA FOR SINGLE-FACTOR INDEPENDENT GROUPS DESIGN
Calculating Effect Size for Designs with Three or More Independent Groups
Assessing Power for Independent Groups Designs
Comparing Means in Multiple-Group Experiments
REPEATED MEASURES ANALYSIS OF VARIANCE
TWO-FACTOR ANALYSIS OF VARIANCE FOR INDEPENDENT GROUPS DESIGNS
Analysis of a Complex Design with an Interaction Effect
Analysis with No Interaction Effect
Effect Sizes for Two-Factor Design with Independent Groups
ROLE OF CONFIDENCE INTERVALS IN THE ANALYSIS OF COMPLEX DESIGNS
TWO-FACTOR ANALYSIS OF VARIANCE FOR A MIXED DESIGN
REPORTING RESULTS OF A COMPLEX DESIGN
SUMMARY
PART V: Analyzing and Reporting Research

OVERVIEW

In Chapter 11 we introduced the three major stages of data analysis: *getting to know the data, summarizing the data, and confirming what the data tell us*. In the final stage of data analysis we evaluate whether we have sufficient evidence to make a claim about behavior. What, given these data, can we say about behavior? This stage is sometimes called *confirmatory data analysis* (e.g., Tukey, 1977). At this point we seek confirmation for what the data are telling us. In Chapter 11 we emphasized the use of confidence intervals to confirm what the data tell us. In this chapter we continue our discussion of confirmatory data analysis by focusing on tests of statistical significance, or what is more formally known as *null hypothesis significance testing* (NHST).

NHST is the most common approach to performing confirmatory data analysis in psychology. Nevertheless, tests of statistical significance have received persistent criticism (e.g., Cohen, 1995; Hunter, 1997; Loftus, 1991, 1996; Meehl, 1967; Schmidt, 1996), and for good reason. Researchers have been misusing (and misinterpreting) them for decades, all the time ignoring warnings that they were doing so (e.g., Finch, Thomason, & Cumming, 2002). There are critics who suggest we discard NHST altogether (e.g., Hunter, 1997; Schmidt, 1996). However, the majority of experts suggest that we continue to use NHST but be cautious about its use (e.g., Abelson, 1995, 1997; Chow, 1988; Estes, 1997; Greenwald, Gonzalez, Harris, & Guthrie, 1996; Hagen, 1997; Howell, 2013; Krueger, 2001; Mulaik, Raju, & Harshman, 1997). Whatever the outcome of this debate within the psychology community, there is nearly universal agreement on the need (a) to understand exactly what it is that NHST can and cannot do, and (b) to increase our use of alternative methods of data analysis, especially the use of confidence intervals and the reporting of effect sizes. Sometimes these alternative techniques will supplant NHST, at other times they will complement NHST.

In this chapter we first provide an overview of NHST. Next we discuss the important concepts of experimental sensitivity and statistical power. Then we illustrate the NHST approach to data analysis using the same data we used in Chapter 11 to construct confidence intervals for the difference between two means. By using the same data, we can contrast the information obtained from NHST with that provided by confidence intervals. We point out what we can and cannot say based on NHST and suggest that information obtained from NHST can complement information obtained with confidence intervals. Finally, we provide some recommendations for you to follow when evaluating evidence for a claim about behavior involving two means and illustrate how to create an analysis story for your study.

The most common technique of confirmatory data analysis associated with studies involving more than two groups is a form of NHST called *analysis of variance* (ANOVA). The rationale for using ANOVA, the computational procedures associated with ANOVA, and the interpretation of ANOVA results are discussed in the second half of this chapter.

Null Hypothesis Significance Testing (NHST)

- Null hypothesis testing is used to determine whether mean differences among groups in an experiment are greater than the differences that are expected simply because of error variation.
The first step in null hypothesis testing is to assume that the groups do not differ—that is, that the independent variable did not have an effect (the null hypothesis).

Probability theory is used to estimate the likelihood of the experiment’s observed outcome, assuming the null hypothesis is true.

A statistically significant outcome is one that has a small likelihood of occurring if the null hypothesis were true.

Because decisions about the outcome of an experiment are based on probabilities, errors may occur: Type I (rejecting a true null hypothesis) or Type II (failing to reject a false null hypothesis).

Statistical inference is both inductive and indirect. It is inductive because we draw general conclusions about populations on the basis of the specific samples we test in our experiments, as we do when constructing confidence intervals. However, unlike the approach using confidence intervals, this form of statistical inference is also indirect because it begins by assuming the null hypothesis. The null hypothesis (H_0) is the assumption that the independent variable has had no effect. Once we make this assumption, we can use probability theory to determine the likelihood of obtaining this difference (or a larger difference) observed in our experiment IF the null hypothesis were true. If this likelihood is small, we reject the null hypothesis and conclude that the independent variable did have an effect on the dependent variable. Outcomes that lead us to reject the null hypothesis are said to be statistically significant. A statistically significant outcome means only that the difference we obtained in our experiment is larger than would be expected if error variation alone (i.e., chance) were responsible for the outcome (see Box 12.1).

A statistically significant outcome is one that has only a small likelihood of occurring if the null hypothesis were true. But just how small is small enough? Although there is no definitive answer to this important question, the consensus among members of the scientific community is that outcomes associated with probabilities of less than 5 times out of 100 (or .05) if the null hypothesis were true are judged to be statistically significant. The probability we elect to use to indicate an outcome is statistically significant is called the level of significance. The level of significance is indicated by the Greek letter alpha (α). Thus, we speak of the .05 level of significance, which we report as $\alpha = .05$.

Just what do our results tell us when they are statistically significant? The most useful information we gain is that we know that something interesting has happened. More specifically, we know that the smaller the exact probability of the observed outcome, the greater is the probability that an exact replication will produce a statistically significant finding. But we must be careful what we mean by this statement. Researchers sometimes mistakenly say that when a result occurs with $p < .05$, “This outcome will be obtained 95/100 times if the study is repeated.” This is simply not true. Achieving statistical significance (i.e., $p < .05$) does not tell us about the probability of replicating the results. For example, a result just below .05 probability (and thus statistically significant) has only about a 50:50 chance of being statistically significant (i.e., $p < .05$) if replicated exactly (Greenwald et al., 1996). On the other hand, knowing the exact probability of the results does convey information about what will
Perhaps you can appreciate the process of statistical inference by considering the following dilemma. A friend, with a sly smile, offers to toss a coin with you to see who pays for the meal you just enjoyed at a restaurant. Your friend just happens to have a coin ready to toss. Now it would be convenient if you could directly test whether your friend’s coin is biased (by asking to look at it). Not willing to appear untrusting, however, the best you can do is test your friend’s coin indirectly by assuming it is not biased and seeing if you consistently get outcomes that differ from the expected 50:50 split of heads and tails. If the coin does not exhibit the ordinary 50:50 split (after many trials of flipping the coin), you might surmise that your friend is trying, by slightly underhanded means, to get you to pay for the meal. Similarly, we would like to make a direct test of statistical significance for an obtained outcome in our experiments. The best we can do, however, is to compare our obtained outcome with the expected outcome of no difference between frequencies of heads and tails. The key to understanding null hypothesis testing is to recognize that we can use the laws of probability to estimate the likelihood of an outcome only when we assume that chance factors are the sole cause of that outcome. This is not different from flipping your friend’s coin a number of times to make your conclusion. You know that, based on chance alone, 50% of the time the coin should come up heads, and 50% of the time it should be tails. After many coin tosses, anything different from this probable outcome would lead you to conclude that something other than chance is working—that is, your friend’s coin is biased.

<table>
<thead>
<tr>
<th>BOX 12.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADS OR TAILS? TOSSING COINS AND NULL HYPOTHESES</td>
</tr>
</tbody>
</table>

Perhaps you can appreciate the process of statistical inference by considering the following dilemma. A friend, with a sly smile, offers to toss a coin with you to see who pays for the meal you just enjoyed at a restaurant. Your friend just happens to have a coin ready to toss. Now it would be convenient if you could directly test whether your friend’s coin is biased (by asking to look at it). Not willing to appear untrusting, however, the best you can do is test your friend’s coin indirectly by assuming it is not biased and seeing if you consistently get outcomes that differ from the expected 50:50 split of heads and tails. If the coin does not exhibit the ordinary 50:50 split (after many trials of flipping the coin), you might surmise that your friend is trying, by slightly underhanded means, to get you to pay for the meal. Similarly, we would like to make a direct test of statistical significance for an obtained outcome in our experiments. The best we can do, however, is to compare our obtained outcome with the expected outcome of no difference between frequencies of heads and tails. The key to understanding null hypothesis testing is to recognize that we can use the laws of probability to estimate the likelihood of an outcome only when we assume that chance factors are the sole cause of that outcome. This is not different from flipping your friend’s coin a number of times to make your conclusion. You know that, based on chance alone, 50% of the time the coin should come up heads, and 50% of the time it should be tails. After many coin tosses, anything different from this probable outcome would lead you to conclude that something other than chance is working—that is, your friend’s coin is biased.

happen if a replication were done. The smaller the exact probability of an initial finding, the greater the probability that an exact replication will produce a statistically significant ($p < .05$) finding (e.g., Posavac, 2002). Consequently, and as recommended by the American Psychological Association (APA), *always report the exact probability of results when carrying out NHST.*

Strictly speaking, there are only two conclusions possible when you do an inferential statistics test: Either you *reject* the null hypothesis or you *fail to reject* the null hypothesis. Note that we did *not* say that one alternative is to accept the null hypothesis. Let us explain.

When we conduct an experiment and observe the effect of the independent variable is not statistically significant, we do not reject the null hypothesis. However, neither do we necessarily accept the null hypothesis of no difference. There may have been some factor in our experiment that prevented us from observing an effect of the independent variable (e.g., ambiguous instructions to subjects, poor operationalization of the independent variable). As we will show later, too small a sample often is a major reason why a null hypothesis is not rejected. Although we recognize the logical impossibility of proving that a null hypothesis is true, we also must have some method of deciding which independent variables are not worth pursuing. NHST can help with that decision. A result that is not statistically significant suggests we should be cautious about concluding that the independent variable influenced behavior in more than a
trivial way. At this point you will want to seek more information, for example, by noting the size of the sample and the effect size (see the next section, “Experimental Sensitivity and Statistical Power”).

There is a troublesome aspect to the process of statistical inference and our reliance on probabilities for making decisions. No matter what decision you reach, and no matter how carefully you reach it, there is always some chance you are making an error. The two possible “states of the world” and the two possible decisions an experimenter can reach are listed in Table 12.1. The two “states of the world” are that the independent variable either does or does not have an effect on behavior. The two possible correct decisions the researcher can make are represented by the upper-left and lower-right cells of the table. If the independent variable does have an effect, the researcher should reject the null hypothesis; if it does not, the researcher should fail to reject the null hypothesis.

The two potential errors (Type I error and Type II error) are represented by the other two cells of Table 12.1. These errors arise because of the probabilistic nature of statistical inference. When we decide an outcome is statistically significant because the outcome’s probability of occurring under the null hypothesis is less than .05, we acknowledge that in 5 out of every 100 tests, the outcome could occur even if the null hypothesis were true. The level of significance, therefore, represents the probability of making a Type I error: rejecting the null hypothesis when it is true. The probability of making a Type I error can be reduced simply by making the level of significance more stringent, perhaps .01. The problem with this approach is that it increases the likelihood of making a Type II error: failing to reject the null hypothesis when it is false.

The problem of Type I errors and Type II errors should not immobilize us, but it should help us understand why researchers rarely use the word “prove” when they describe the results of an experiment that involved tests of statistical significance. Instead, they describe the results as “consistent with the hypothesis,” or “confirming the hypothesis,” or “supporting the hypothesis.” These tentative statements are a way of indirectly acknowledging that the possibility of making a Type I error or a Type II error always exists. The .05 level of significance represents a compromise position that allows us to strike a balance and avoid making too many of either type of error. The problem of Type I errors and Type II errors also reminds us that statistical inference can never replace replication as the best test of the reliability of an experimental outcome.
EXPERIMENTAL SENSITIVITY AND STATISTICAL POWER

- Sensitivity refers to the likelihood that an experiment will detect the effect of an independent variable when, in fact, the independent variable truly has an effect.
- Power refers to the likelihood that a statistical test will allow researchers to reject correctly the null hypothesis of no group differences.
- The power of statistical tests is influenced by the level of statistical significance, the size of the treatment effect, and the sample size.
- The primary way for researchers to increase statistical power is to increase sample size.
- Repeated measures designs are likely to be more sensitive and to have more statistical power than independent groups designs because estimates of error variation are likely to be smaller in repeated measures designs.
- Type II errors are more common in psychological research using NHST than are Type I errors.
- When results are not statistically significant (i.e., \(p > .05 \)), it is incorrect to conclude that the null hypothesis is true.

The sensitivity of an experiment is the likelihood that it will detect an effect of the independent variable if the independent variable does, indeed, have an effect (see Chapter 7). An experiment is said to have sensitivity; a statistical test is said to have power. The power of a statistical test is the probability that the null hypothesis will be rejected when it is false. The null hypothesis is the hypothesis of “no difference” and, thus, is false and should be rejected when the independent variable has made a difference. Recall that we defined a Type II error as the probability of failing to reject the null hypothesis when it is false. Power can also be defined as 1 minus the probability of a Type II error.

Power tells us how likely we are to “see” an effect that is there and is an estimate of the study’s replicability. Because power tells us the probability of rejecting a false null hypothesis, we know how likely we are to miss a real effect. For instance, if a result is not significant and power is only .30, we know that a study with these characteristics detects an effect equal to the size we observed only 3 out of 10 times. Therefore, 7 of 10 times we do this study we will miss seeing the effect. In this case we may want to suspend judgment until the study can be redone with greater power.

The power of a statistical test is determined by the interplay of three factors: the level of statistical significance, the size of the treatment effect, and the sample size (Keppel, 1991). For all practical purposes, however, sample size is the primary factor that researchers use to control power. The differences in sample size that are needed to detect effects of different sizes can be dramatic. For example, Cohen (1988) reports the sample sizes needed for an independent groups design experiment with one independent variable manipulated at three levels. It takes a sample size of 30 to detect a large treatment effect; it takes a sample size of 76 to detect a medium treatment effect; and it takes a sample size of 464 to detect a small treatment effect. It thus takes over 15 times more participants to detect a small effect than it does to detect a large effect!
Using repeated measures experiments can also affect the power of the statistical analyses researchers use. As described in Chapter 7, repeated measures experiments are generally more sensitive than are independent groups experiments. This is because the estimates of error variation are generally smaller in repeated measures experiments. The smaller error variation leads to an increased ability to detect small treatment effects in an experiment. And that is just what the power of a statistical analysis is—the ability to detect small treatment effects when they are present.

When introducing NHST we suggested that making a so-called Type I error is equivalent to alpha (.05 in this case). Logically, to make this kind of error, the null hypothesis must be capable of being false. Yet, critics argue that the null hypothesis defined as zero difference is “always false” (e.g., Cohen, 1995, p. 1000) or, somewhat more conservatively, is “rarely true” (Hunter, 1997, p. 5). Whether the null hypothesis, defined as zero difference between population means, is ever really true is a matter of debate. Some argue the null hypothesis is always false, that is, there is always at least some difference between population means. Nevertheless, in many situations it is worth testing an effect against a hypothesis of no difference (see Abelson, 1997; Mulaik et al., 1997). Researchers must be alert to the fact that in some situations it may be important not to conclude an effect is present when it is not, at least not to more than a trivial degree (see Box 12.2). What is agreed upon is that the probability of a Type II error, that is, saying a real effect is not there, is generally much greater than .05 (for a discussion of these issues see Cohen, 1995; Hunter, 1997; Schmidt & Hunter, 1997). This type of error occurs due to the low statistical power in many psychology studies.

BOX 12.2

DO WE EVER ACCEPT THE NULL HYPOTHESIS?

Despite what we have said thus far, there may be some instances in which researchers will choose to accept the null hypothesis (rather than simply fail to reject it). Yeaton and Sechrest (1986, pp. 836–837) argue persuasively that findings of no difference are especially critical in applied research. Consider some questions they cite to illustrate their point: Are children who are placed in daycare centers as intellectually, socially, and emotionally advanced as children who remain in the home? Is a new, cheaper drug with fewer side effects as effective as the existing standard in preventing heart attacks?

These important questions clearly illustrate situations in which accepting the null hypothesis (no effect) involves more than a theoretical issue—life and death consequences rest on making the correct decision. Frick (1995) argues that never accepting the null hypothesis is neither desirable nor practical for psychology. There may be occasions when we want to be able to state with confidence that there is no (meaningful) difference (see also Shadish, Cook, & Campbell, 2002; see also Howell, 2013, pp. 91–92).
Type II errors are likely when power is low, and low power has characterized many studies in the literature: *The most common error in psychological research using NHST is a Type II error.* Just because we did not obtain statistical significance does not mean that an effect is not present (e.g., Schmidt, 1996). In fact, one important reason for obtaining a measure of effect size is that we can compare the obtained effect with that found in other studies, whether or not the effect was statistically significant. This is the goal of meta-analysis (see Chapter 6). Although a nonsignificant finding does not tell us that an effect is absent, assuming that our study was conducted with sufficient power, a nonsignificant finding may indicate that an effect is so small that it isn’t worth worrying about.

To determine the power of your study before it is conducted, you must first estimate the effect size anticipated in your experiment. An examination of the effect sizes obtained in previous studies for the independent variable of interest should guide your estimate. Once an effect size is estimated, you must then turn to “power tables” to obtain information about the sample size you should use in order to “see” the effect. These steps for conducting a power analysis are described more fully in various statistics textbooks (e.g., Zechmeister & Posavac, 2003), and power tables can be found on the Web. *When you have a good estimate of the effect size you are testing, it is strongly recommended that you perform a power analysis before doing a research study.*

Power tables are also used after the fact. When a study is completed and the finding is not statistically significant, the APA *Publication Manual* (2010) recommends that the power of your study be reported. In this way you communicate to other researchers the likelihood of detecting an effect that was there. If that likelihood was low, then the research community may wish to suspend judgment regarding the meaning of your findings until a more powerful replication of your study is carried out. On the other hand, a statistically nonsignificant result from a study with sufficient power may suggest to the research community that this is an effect not worth pursuing.

NHST: Comparing Two Means

- The appropriate inferential test when comparing two means obtained from different groups of subjects is a *t*-test for independent groups.
- A measure of effect size should always be reported when NHST is used.
- The appropriate inferential test when comparing two means obtained from the same subjects (or matched groups) is a repeated measures (within-subjects) *t*-test.

We now illustrate the use of NHST when comparing the difference between two means. First, we consider a research study involving two independent means. The data for this study are from our example vocabulary study, which we described in Chapter 11. Then we consider a situation where there are two dependent means, that is, when a repeated measures design was used.
CHAPTER 12: Data Analysis and Interpretation: Part II. Tests of Statistical Significance and the Analysis Story

Independent Groups

Recall that a study was conducted in which the vocabulary size of college students and older adults was assessed. The appropriate inferential test for this situation is a \(t \)-test for independent groups. We may use this test to evaluate the difference between the mean percent multiple-choice performance of the college and older adult samples. Statistical software programs typically provide the actual probability of an obtained \(t \) as part of the output. A formula for calculating the value of \(t \) is included in Appendix A.2. The APA Publication Manual (2010) advises that the exact probability be reported. When the exact probability is less than .001 (e.g., \(p = .0004 \)), statistical software programs frequently report the exact probability as .000. (This was the case for the analysis reported above.) Of course, the exact probability is not .000 but something less than .001. The degrees of freedom for the independent groups \(t \)-test are: \(n_1 + n_2 - 2 \).

Therefore, for the vocabulary study we have been discussing, the result of the inferential statistics test can be summarized as

\[
t(50) = 5.84, \ p < .001
\]

In Chapter 11 we showed how an effect size, \(d \), can be calculated for a comparison between two means. A measure of effect size should always be reported when NHST is used. You may recall that in Chapter 11 we calculated \(d \) for the vocabulary study as 1.65. Cohen’s \(d \) also can be calculated from the outcome of the independent groups \(t \)-test according to the following formula:

\[
d = \frac{2t}{\sqrt{df}} \quad \text{(see Rosenthal & Rosnow, 1991)}
\]

That is,

\[
d = \frac{2(5.84)}{\sqrt{50}} = \frac{11.68}{7.07} = 1.65
\]

Repeated Measures Designs

Thus far we have considered experiments involving two independent groups of subjects. As you are aware, experiments can also be carried out by having each subject participate in each condition of the experiment or by “matching” subjects on some measure related to the dependent variable (e.g., IQ scores, weight). Such experiments are called matched groups (see Chapter 6), within-subjects designs, or repeated measures designs (see Chapter 7). The logic of NHST is the same in a repeated measures design as it is in an independent groups design. However, the \(t \)-test comparing two means takes on a different form in a repeated measures design. The \(t \)-test in this situation is typically called a direct-difference \(t \) or repeated measures (within-subjects) \(t \)-test. When carrying out a computer-assisted analysis when subjects are in both conditions of the experiment you will find that the data are entered differently than when independent groups of subjects are tested.

Key Concept

\[
Key Concept
\]
The numerator of the repeated measures \(t \) is the mean of the difference scores \((D) \) and is algebraically equivalent to the difference between the sample means (i.e., \(\bar{X}_1 - \bar{X}_2 \)). The denominator is the estimated standard error of the difference scores (see Chapter 11). Statistical significance is determined by comparing the obtained \(t \) with critical values of \(t \) with \(df \) equal to \(N - 1 \). In this case, \(N \) refers to the number of participants or pairs of scores in the experiment. You interpret the obtained \(t \) as you would the \(t \) obtained in an independent groups design.

As noted in Chapter 11, assessing effect size in a matched groups or repeated measures design is somewhat more complex than for an independent groups design (see Cohen, 1988, and Rosenthal & Rosnow, 1991, for information pertaining to the calculation of \(d \) in these cases).

Statistical Significance and Scientific or Practical Significance

- We must recognize the fact that statistical significance is not the same as scientific significance.
- We also must acknowledge that statistical significance is not the same as practical or clinical significance.

Tests of statistical significance are an important tool in the analysis of research findings. We must be careful, however, to interpret statistically significant findings correctly (see Box 12.3). We must also be careful not to confuse a statistically significant finding with a scientifically significant finding. Whether the results of a study are important to the scientific community will depend on the nature of the variable under study (the effects of some variables are simply more important than those of others), how sound the study is (statistically significant findings can be produced with poorly done studies), and other criteria such as effect size (see, for example, Abelson, 1995).

Similarly, the practical or clinical significance of a treatment effect depends on factors other than statistical significance. These include the external validity associated with the study, the size of the effect, and various practical considerations (including financial ones) associated with a treatment’s implementation. Even a statistically significant outcome showing a large effect size is not a guarantee of its practical or clinical significance. A very large effect size might be obtained as a part of a study that does not generalize well from the laboratory to the real world (i.e., has low external validity); thus, the results may be of little value to the applied psychologist. Moreover, a relatively large treatment effect that does generalize well to real-world settings may never be applied because it is too costly, too difficult to implement, too controversial, or too similar in its effects to existing treatments.

It is also possible that, given enough power, a small effect size will be statistically significant. Small effect sizes may not be practically important outside the laboratory. As we described in Chapter 6, external validity is an empirical question. It is important to conduct a study under conditions similar to those in which the treatment will be used in order to see whether a finding is practically significant. We are not likely to carry out such an empirical test, however, if the effect size is small (although see Rosenthal, 1990, for important exceptions).
We cannot specify the exact probability for the real difference between the means. For example, it is wrong to say that the probability is .95 that the observed difference between the means reflects a real (true) mean difference in the populations.

The outcome of NHST reveals the probability of a difference this great by chance (given these data) assuming the null hypothesis is true. It does not tell us about probabilities in the real world (e.g., Mulaik et al., 1997). If results occur with a probability less than our chosen alpha level (e.g., .05), then all we can conclude is that the outcome is not likely to be a chance event in this situation.

Statistically significant results do not demonstrate that the research hypothesis is correct. (For example, the data from the vocabulary study do not prove that older adults have greater vocabulary knowledge than do younger adults.)

NHST (as well as confidence intervals) cannot prove that a research hypothesis is correct. A statistically significant result is (reasonably) sometimes said to “provide support for” or to “give evidence for” a hypothesis, but it alone cannot prove that the research hypothesis is correct. There are a couple of important reasons why. First, NHST is a game of probabilities; it provides answers in the form of likelihoods that are never 1.00 (e.g., \(p \) greater or less than .05). There is always the possibility of error. If there is “proof,” it is only “circumstantial” proof. As we have seen, the research hypothesis can only be tested indirectly by referring to the probability of these data assuming the null hypothesis is true. If the probability that our results occurred by chance is very low (assuming a true null hypothesis), we may reason that the null hypothesis is really not true; this does not, however, mean our research hypothesis is true. As Schmidt and Hunter (1997, p. 59) remind us, researchers doing NHST “are focusing not on the actual scientific hypothesis of interest.” Second, evidence for the effect of an independent variable is only as good as the methodology that produced the effect. The data used in NHST may or may not be from a study that is free of confounds or experimenter errors. It is possible that another factor was responsible for the observed effect. (For example, suppose that the older adults in the vocabulary study, but not the college students, had been recruited from a group of expert crossword puzzle players.) As we have mentioned, a large effect size can easily be produced by a bad experiment. Evidence for a research hypothesis must be sought by examining the methodology of a study as well as considering the effect produced on the dependent variable. Neither NHST, confidence intervals, nor effect sizes tell us about the soundness of a study’s methodology.

Recommendations for Comparing Two Means

We offer the following recommendations when evaluating the data from a study looking at the difference between two means. First, keep in mind the final goal of data analysis: to make a case based on our observations for a claim about behavior. In order to make the best case possible, you will want to explore various alternatives for data analysis. Don’t fall into the trap of thinking that there is one and only one way to provide evidence for a claim about behavior. When there is a choice (and there almost always is), as recommended by the APA’s Task Force on Statistical Inference (Wilkinson et al., 1999), use the simplest possible analysis.
Second, when using NHST be sure to understand its limitations and what the outcome of NHST allows you to say. Always consider reporting a measure of effect magnitude when using NHST, and also a measure of power, especially when a nonsignificant result is found. Although there will be some situations when effect size information is not warranted—for example, when testing a theoretical prediction of direction only (e.g., Chow, 1988), these situations are relatively rare. In many research situations, and in nearly all applied situations, effect size information is an important, even necessary, complement to NHST. Finally, researchers must “break the habit” of relying solely on NHST and consider reporting confidence intervals for effect sizes in addition to, or even rather than, \(p \) values associated with results of inferential tests. The APA *Publication Manual* (2010, p. 33) strongly recommends the use of confidence intervals.

Reporting Results when Comparing Two Means

We are now in a position to model a statement of results that takes into account the information gained from all three stages of data analysis, the complementary evidence obtained by using confidence intervals (Chapter 11) and NHST, and the recommendations of the APA *Publication Manual* (2010) regarding reporting results (see especially pp. 32–35 of the Manual). Additional help on reporting results using both NHST and a confidence interval (abbreviated as CI in a Results section) is found in Chapter 13.

Reporting Results of the Vocabulary Study
We may report the results as follows:

The mean performance on the multiple-choice vocabulary test for college students was 45.58 (\(SD = 10.46 \)); the mean of the older group was 64.04 (\(SD = 12.27 \)). This difference was statistically significant, \(t(50) = 5.84, p < .001, d = 1.65 \), 95% CI [12.11, 24.81]. Older participants in this study had a greater vocabulary size than did the younger participants.

Commentary
Descriptive statistics in the forms of means and standard deviations summarize “what happened” in the experiment as a function of the independent variable (age). Because the exact probability was less than .001, results are reported at \(p < .001 \), but note that exact probabilities are to be reported when .001 or greater. The exact probability conveys information about the probability of an exact replication (Posavac, 2002). That is, we know that the results are “more reliable” than if a larger exact \(p \) value had been obtained. This information is not learned when only confidence intervals are reported. The sentence beginning “Older participants in this study . . .” summarizes in words what the statistical analysis revealed. It is always important to tell your reader directly what the analysis shows. This becomes increasingly important as the number and complexity of analyses performed and reported in a research study increase. An effect size (i.e., \(d \)) is also reported as recommended by the APA *Publication Manual*. This information is valuable to researchers doing meta-analyses and who wish to compare results of studies using similar variables. On the other hand, confidence intervals provide a range of possible effect sizes in terms of
actual mean differences and not a single value such as Cohen’s d. Because zero is not within the interval, we know that the outcome would be statistically significant at the .05 level (see Chapter 11). However, as the APA Manual emphasizes, confidence intervals provide information about precision of estimation and location of an effect that is not given by NHST alone. Recall from Chapter 11 that the smaller the confidence interval, the more precise is our estimate.

Power Analysis When we know the effect size, we can determine the statistical power of an analysis using power tables. Power, as you will recall, is the probability that a statistically significant effect will be obtained. Suppose that a previous study of vocabulary size contrasting younger and older adults produced an effect size of .50, a medium effect according to Cohen’s (1988) rule of thumb. We can use power tables created by Cohen to determine the number of participants needed in a test of mean differences to “see” an effect of size .50 with alpha .05. A power table identifies the power associated with various effect sizes as a function of sample size. It turns out that the sample size (in each group) of a two-group study would have to be about 64 to achieve power of .80 (for a two-tailed test). Looking for a medium effect size, we would need a total of 128 (64×2) participants to obtain statistical significance in 8 of 10 tries. Had the researchers been looking for a medium effect, their vocabulary study would have been underpowered. As it turns out, anticipating a large effect size, a sample size of 26 was appropriate to obtain power of .80.

If the result is not statistically significant, then an estimate of power should be reported. If, for example, using an independent groups design the outcome had been $t(28) = 4.52, p = .006$, with an effect size of .50, we can determine the power of the study after the fact. Assuming equal-size groups in the study, we know that there were 15 subjects in each group ($df = n_1 + n_2 - 2$, or $28 = 15 + 15 - 2$). Power analysis will reveal that power for this study is .26. A statistically significant outcome would be obtained in only about 1 of 4 attempts with this sample size and when a medium (.50) effect must be found. In this case,

<table>
<thead>
<tr>
<th>STRETCHING EXERCISE A TEST OF (YOUR UNDERSTANDING OF) THE NULL HYPOTHESIS TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>As should be apparent by now, understanding, applying, and interpreting results of NHST is no easy task. Even seasoned researchers occasionally make mistakes. To help you avoid mistakes, we provide a true-false test based on the information presented thus far about NHST. Assume that an independent groups design was used to assess performance of participants in an experimental and control group. There were 12 participants in each condition, and results of NHST with alpha set at .05 revealed $t(22) = 4.52$, $p = .006$. True or false? The researcher may reasonably conclude on the basis of this outcome that</td>
</tr>
<tr>
<td>1. The null hypothesis should be rejected.</td>
</tr>
<tr>
<td>2. The research hypothesis has been shown to be true.</td>
</tr>
<tr>
<td>3. The results are of scientific importance.</td>
</tr>
<tr>
<td>4. The probability that the null hypothesis is true is only .006.</td>
</tr>
<tr>
<td>5. The probability of finding statistical significance at the .05 level if the study were replicated is greater than if the exact probability had been .02.</td>
</tr>
</tbody>
</table>
researchers would need to decide if practical or theoretical decisions should be made on the basis of this result or if “more research is needed.” Should you pursue advanced study in psychology, you will want to explore more about power analysis.

DATA ANALYSIS INVOLVING MORE THAN TWO CONDITIONS

Thus far we have discussed the stages of data analysis in the context of an experiment with two conditions, that is, two levels of one independent variable. What happens when we have more than two levels (conditions) or, as is often the case in psychology, more than two independent variables? The most frequently used statistical procedure for analyzing results of psychology experiments in these situations is the analysis of variance (ANOVA).

We illustrate how ANOVA is used to test null hypotheses in four specific research situations: single-factor analysis of independent groups designs; single-factor analysis for repeated measures designs; two-factor analysis for independent groups designs; and two-factor analysis for mixed designs. We recommend that, before proceeding, you review the information presented in Chapters 6, 7, and 8 that describes these research designs.

ANOVA FOR SINGLE-FACTOR INDEPENDENT GROUPS DESIGN

- Analysis of variance (ANOVA) is an inferential statistics test used to determine whether an independent variable has had a statistically significant effect on a dependent variable.
- The logic of analysis of variance is based on identifying sources of error variation and systematic variation in the data.
- The F-test is a statistic that represents the ratio of between-group variation to within-group variation in the data.
- The results of the initial overall analysis of an omnibus F-test are presented in an analysis of variance summary table.
- Although analysis of variance can be used to decide whether an independent variable has had a statistically significant effect, researchers examine the descriptive statistics to interpret the meaning of the experiment’s outcome.
- Effect size measures for independent groups designs include eta squared (η^2) and Cohen’s f.
- A power analysis for independent groups designs should be conducted prior to implementing the study in order to determine the probability of finding a statistically significant effect, and power should be reported whenever nonsignificant results based on NHST are found.
- Comparisons of two means may be carried out to identify specific sources of systematic variation contributing to a statistically significant omnibus F-test.
Overview Statistical inference requires a test to determine whether or not the outcome of an experiment was statistically significant. The most commonly used inferential statistics test in the analysis of psychology experiments is the ANOVA. As its name implies, the analysis of variance is based on analyzing different sources of variation in an experiment. In this section we briefly introduce how the analysis of variance is used to analyze experiments that involve independent groups with one independent variable, or what is called a single-factor independent groups design. Although ANOVA is used to analyze the results of either random groups or natural groups designs, the assumptions underlying ANOVA strictly apply only to the random groups design.

There are two sources of variation in any random groups experiment. First, variation within each group can be expected because of individual differences among subjects who have been randomly assigned to a group. The variation due to individual differences cannot be eliminated, but this variation is presumed to be balanced across groups when random assignment is used. In a properly conducted experiment, the differences among subjects within each group should be the only source of error variation. Participants in each group should be given instructions in the same way, and the level of the independent variable to which they’ve been assigned should be implemented in the same way for each member of the group (see Chapter 6).

The second source of variation in the random groups design is variation between the groups. If the null hypothesis is true (no differences among groups), any observed differences among the means of the groups can be attributed to error variation (e.g., the different characteristics of the participants in the groups). As we’ve seen previously, however, we don’t expect sample means to be exactly identical. Fluctuations produced by sampling error make it likely that the means will vary somewhat—this is error variation. Thus, the variation among the different group means, when the null hypothesis is assumed to be true, provides a second estimate of error variation in an experiment. If the null hypothesis is true, this estimate of error variation between groups should be similar to the estimate of error variation within groups. Thus, the random groups design provides two independent estimates of error variation, one within the groups and one between the groups.

Now suppose that the null hypothesis is false. That is, suppose the independent variable has had an effect in your experiment. If the independent variable has had an effect, the means for the different groups should be different. An independent variable that has an effect on behavior should produce systematic differences in the means across the different groups of the experiment. That is, the independent variable should introduce a source of variation among the groups of the experiment—it should cause the groups to vary. This systematic variation will be added to the differences in the group means that are already present due to error variation. That is, between-group variation will increase.

The F-Test We are now in a position to develop a statistic that will allow us to tell whether the variation due to our independent variable is larger than would be expected on the basis of error variation alone. This statistic is called F; it is...
named after Ronald Fisher, the statistician who developed the test. The conceptual definition of the F-test is

$$F = \frac{\text{Variation between groups}}{\text{Variation within groups}} = \frac{\text{Error variation} + \text{systematic variation}}{\text{Error variation}}$$

If the null hypothesis is true, there is no systematic variation between groups (no effect of the independent variable) and the resulting F-test has an expected value of 1.00 (since error variation divided by error variation would equal 1.00). As the amount of systematic variation increases, however, the expected value from the F-test becomes greater than 1.00.

The analysis of experiments would be easier if we could isolate the systematic variation produced by the independent variable. Unfortunately, the systematic variation between groups comes in a “package” along with error variation. Consequently, the value of the F-test may sometimes be larger than 1.00 simply because our estimate of error variation between groups happens to be larger than our estimate of error variation within groups (i.e., the two estimates should be similar but can differ due to chance factors). How much greater than 1.00 does the F statistic have to be before we can be relatively sure that it reflects true systematic variation due to the independent variable? Our earlier discussion of statistical significance provides an answer to this question. To be statistically significant, the F value needs to be large enough so that its probability of occurring if the null hypothesis were true is less than our chosen level of significance, usually .05.

We are now ready to apply the principles of NHST and the procedures of ANOVA to analyze a specific experiment.

Analysis of Single-Factor Independent Groups Design The first step in doing an inferential statistics test like the F-test is to state the research question the analysis is intended to answer. Typically, this takes the form of “Did the independent variable have any overall effect on performance?” Once the research question is clear, the next step is to develop a null hypothesis for the analysis. The experiment we will discuss as an example examines the effect on memory retention of several kinds of memory training. There are four levels (conditions) of this independent variable and, consequently, four groups of participants. Each sample or group represents a population. The initial overall analysis of the experiment is called an omnibus F-test. The null hypothesis for such omnibus tests is that all the population means are equal. Remember that the null hypothesis assumes no effect of the independent variable. The formal statement of a null hypothesis (H_0) is always made in terms of population characteristics. These population characteristics are indicated by Greek letters, and the population mean is symbolized as μ (“mu”). We can use a subscript for each mean to represent the levels of the independent variable. Our null hypothesis then becomes

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

The alternative to the null hypothesis is that one or more of the means of the populations are not equal. In other words, the alternative hypothesis (H_1) states
that H_0 is wrong; there is a difference somewhere. The alternative hypothesis becomes

$$H_1: \text{NOT } H_0$$

If the type of memory training does have an effect on retention (i.e., if the independent variable produces systematic variation), then we will want to reject the null hypothesis.

The data in Table 12.2 represent the number of words correctly recalled (out of a possible 20) on a retention test in an experiment investigating memory training techniques. Five participants were randomly assigned to each of four groups (defined by the method of study that individuals were instructed to use to learn the words in preparation for the memory test). The control method involved no specific instructions, but in the three experimental groups participants were instructed to study by making up a story using the to-be-remembered words (story method), to use visual imagery (imagery method), or to use rhymes to remember the words (rhyme method). The independent variable being manipulated is “instruction,” and it can be symbolized by the letter “A.” The levels of this independent variable can be differentiated by using the symbols $a_1, a_2, a_3,$ and a_4 for the four respective groups. The number of participants within each group is referred to as n; in this case, $n = 5$. The total number of individuals in the experiment is symbolized as N; in this case, $N = 20$.

An important step in the analysis of any experiment is to set up a data matrix like the one in Table 12.2. The number of correct responses is listed for each person in each of the four groups with each participant identified with a unique subject number. In order to understand the results of an experiment, it is essential to summarize the data prior to examining the outcome of the ANOVA. Below the data matrix the mean, range (minimum and maximum scores), and standard deviation are provided for each group.

Before examining the “significance” of any inferential test, try to get an impression of what the summary statistics are telling you. Look to see if there is

<table>
<thead>
<tr>
<th>Instruction (A)</th>
<th>Subject</th>
<th>Control (a₁)</th>
<th>Subject</th>
<th>Story (a₂)</th>
<th>Subject</th>
<th>Imagery (a₃)</th>
<th>Subject</th>
<th>Rhymes (a₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td></td>
<td>12</td>
<td>6</td>
<td>15</td>
<td>11</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>7</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>11</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Mean</td>
<td>10.0</td>
<td></td>
<td>13.2</td>
<td></td>
<td>14.4</td>
<td></td>
<td>13.4</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td>1.6</td>
<td></td>
<td>1.3</td>
<td></td>
<td>1.8</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td>8–12</td>
<td></td>
<td>12–15</td>
<td></td>
<td>12–16</td>
<td></td>
<td>12–15</td>
</tr>
</tbody>
</table>
a visible “effect” of the independent variable; that is, see if there is substantial variation among the means. By examining the ranges and standard deviations, get a sense of the variability in each group. (Remember, the less scores vary around their sample means, the better the chance of seeing an effect that is present.) The range, or difference between the minimum and maximum values, is useful in identifying floor and ceiling effects. Is the variability among the groups similar? We want the variation to be relatively homogeneous as wide discrepancies in within-group variability can create interpretation problems when using ANOVA.

Our examination of the summary statistics reveals that there appears to be systematic variation among the means; the largest difference is seen between the Control (10.0) and the Imagery Group (14.4). All the experimental means are larger than the Control mean. Note that the range is similar for all the groups; the standard deviations, too, are fairly similar. This attests to the homogeneity (similarity) of variance among the groups. (Many computer programs provide a test of “homogeneity of variance” along with the ANOVA output.) Moreover, an inspection of the highest scores in each group shows that ceiling effects are not a problem in this data set (as total possible was 20).

The next step in an analysis of variance is to do the computations to obtain the estimates of variation that make up the numerator and denominator of the F-test. Calculations for F-tests are best done using a computer. We will focus, therefore, on interpreting the results of the computations. The results of an analysis of variance are presented in Analysis of Variance Summary Table (see Table 12.3).

Interpreting the ANOVA Summary Table The summary table for the omnibus F-test for the independent groups design used to investigate the effect of memory training is found in Table 12.3. Remember that there were four groups of size $n = 5$ and, thus, overall $N = 20$. It is critically important you know what the ANOVA summary table contains. Thus, we examine the components of the summary table before looking at the outcome of the F-test for the experiment.

The left column of the summary table lists the two sources of variation described earlier. In this case the independent variable of the training group (“Group”) is a source of variation between the groups, and the within-groups differences provide an estimate of error variation. The total variation in the experiment is the sum of the variation between and within groups. The third column is the degrees of freedom (df). In general, the statistical concept of degrees of freedom is defined as the number of entries of interest minus 1. Since there are 4 levels of the training independent variable, there are 3 df between groups. There are 5 participants within each group, so there are 4 df or $(n - 1)$ within each of the 4 groups. Because all 4 groups are the same size, we can determine
the within-groups \(df \) by multiplying the \(df \) within each group by the number of groups \((4 \times 4) \) for 16 \(df \). The total \(df \) is the number of subjects minus 1 \((N - 1)\), or the sum of \(df \) between groups plus \(df \) within groups \((3 + 16 = 19)\).

The sums of squares (SS) and the mean square (MS) are computational steps in obtaining the \(F \) statistic. The MS between groups (row 1) is an estimate of systematic variation plus error variation and is calculated by dividing the SS between groups by the \(df \) between groups \((54.55/3 = 18.18)\). The MS within groups (row 2) is an estimate of error variation only and is computed by dividing the SS within groups by the \(df \) within groups \((37.20/16 = 2.33)\). The \(F \)-test is calculated by dividing the MS between groups by the MS within groups \((18.18/2.33 = 7.80)\).

We are now ready to use the information in the summary table to test for the statistical significance of the outcome in the memory training experiment. You may anticipate the conclusion already, knowing that when the null hypothesis is assumed to be true (i.e., no effect of the independent variable), the estimate of systematic variation plus error variation (numerator of the \(F \)-test) should be approximately equal to the estimate of error variation only (denominator of the \(F \)-test). As we see here, the estimate of systematic variation plus error variation \((18.18)\) is quite a bit larger than the estimate of error variation alone \((2.33)\).

The obtained \(F \) value in this analysis \((7.80)\) appears in the second to last column of the summary table. The probability of obtaining an \(F \) as large as 7.80 if the null hypothesis were true is shown in the last column of the summary table \((0.002)\). The obtained probability of .002 is less than the level of significance \((\alpha = .05)\), so we reject the null hypothesis and conclude that the overall effect of memory training is statistically significant. The results of NHST using ANOVA would be summarized in your research report as

\[
F(3, 16) = 7.80, p = .002
\]

An \(F \) statistic is identified by its degrees of freedom. In this case there are 3 \(df \) between groups and 16 \(df \) within groups (i.e., 3, 16). Note that the exact probability (i.e., .002) is reported because it gives us information about the probability of replication.

Just what have we learned when we find a statistically significant outcome in an analysis of variance testing an omnibus null hypothesis? In one sense, we have learned something very important. We are now in a position to state that manipulating the independent variable produced a change in performance (i.e., participants’ memory for the to-be-remembered words). In another sense, merely knowing our outcome is statistically significant tells us little about the nature of the effect of the independent variable. The descriptive statistics (in our example, the mean number of words recalled as reported in Table 12.2) allow us to describe the nature of the effect. Note that only by examining the pattern of group means do we begin to learn what happened in our experiment as a function of the independent variable. Never try to interpret a statistically significant outcome without referring to the corresponding descriptive statistics.

Although we know that the omnibus \(F \)-test was statistically significant, we do not know the degree of relationship between the independent and dependent
variables, and thus we should consider calculating an effect size for our independent variable. Based on the omnibus test alone we also are unable to state which of the group means differed significantly. Fortunately, there are analysis techniques that allow us to locate more specifically the sources of systematic variation in our experiments. One approach that is highly recommended is the use of confidence intervals (see Chapter 11). Confidence intervals can provide evidence for the pattern of population means estimated by our samples (see especially Box 11.5). Another technique is that of comparing two means. We first discuss an effect size measure for the independent groups ANOVA, as well as power analysis for this design, and then turn our attention to comparisons of two means.

Calculating Effect Size for Designs with Three or More Independent Groups

We mentioned earlier that the psychology literature contains many different measures of effect magnitude, which depend on the particular research design, test statistic, and other peculiarities of the research situation (e.g., Cohen, 1992; Kirk, 1996; Rosenthal & Rosnow, 1991). When we know one measure of effect magnitude, we usually can translate it to another, comparable measure without much difficulty. An important class of effect magnitude measures that applies to experiments with more than two groups is based on measures of “strength of association” (Kirk, 1996). What these measures have in common is that they allow estimates of the proportion of total variance accounted for by the effect of the independent variable on the dependent variable. A popular strength of association measure is **eta squared**, or \(\eta^2 \). It is easily calculated based on information found in the ANOVA Summary Table (Table 12.3) for the omnibus F-test (although many computer programs automatically provide eta squared as a measure of effect size). Eta squared is defined as

\[
\text{Eta squared (} \eta^2 \text{)} = \frac{\text{Sum of squares between groups}}{\text{Total sum of squares}}
\]

In our example (see Table 12.3),

\[
\text{eta squared (} \eta^2 \text{)} = \frac{54.55}{[(54.55) + (37.20)]} = .59
\]

Eta squared can also be computed directly from the F-ratio for the between-groups effect when the ANOVA table is not available (see Rosenthal & Rosnow, 1991, p. 441):

\[
\text{eta squared (} \eta^2 \text{)} = \frac{(F)(df \text{ effect})}{[(F)(df \text{ effect})] + (df \text{ error})}
\]

or, in our example,

\[
\text{eta squared (} \eta^2 \text{)} = \frac{(7.80)(3)}{[(7.80)(3)] + 16} = .59
\]
Another measure, designed by J. Cohen, for designs with three or more independent groups is f (see Cohen, 1988). It is a standardized measure of effect size similar to d, which we saw was useful for assessing effect sizes in a two-group experiment. However, unlike d, which defines an effect in terms of the difference between two means, **Cohen’s f** defines an effect in terms of a measure of dispersal among group means. Both d and f express the effect relative to (i.e., “standardized” on) the within-population standard deviation. Cohen has provided guidelines for interpreting f. Specifically, he suggests that small, medium, and large effects sizes correspond to f values of .10, .25, and .40. The calculation of f is not easily accomplished using the information found in the ANOVA Summary Table (Table 12.3), but it can be obtained without much difficulty once eta squared is known (see Cohen, 1988), as

$$f = \sqrt{\frac{\eta^2}{1 - \eta^2}}$$

or, in our example,

$$f = \sqrt{\frac{.59}{1 - .59}} = 1.20$$

We can thus conclude that memory training accounted for .59 of the total variance in the dependent variable and produced a standardized effect size, f, of 1.20. Based on Cohen’s guidelines for interpreting f (.10, .25, .40), it is apparent that memory training had a large effect on recall scores.

Assessing Power for Independent Groups Designs

Once the effect size is known, we can obtain an estimate of power for a specific sample size and degrees of freedom associated with the numerator (between-groups effect) of the F-ratio. In our example, we set alpha at .05; the experiment was done with $n = 5$ and $df = 3$ for the between-groups effect (number of groups minus 1). The effect size, f, associated with our data set is very large (1.20), and there is no good reason to conduct a power analysis for this large effect which was statistically significant.

However, assume that the ANOVA in our example yielded a nonsignificant F and effect size was $f = .40$, still a large effect according to Cohen’s guidelines. An important question to answer is “What was the power of our experiment?” How likely were we to see an effect of this size given an alpha of .05, a sample size of $n = 5$, and $df = 3$ for our effect? A power analysis reveals that under these conditions power was .26. In other words, the probability of obtaining statistical significance in this situation was only .26. In only approximately one-fourth of the attempts under these conditions would we obtain a significant result. The experiment would be considered underpowered, and it is unreasonable to make much of the fact that NHST did not reveal a significant result. To do so would ignore the very important fact that the effect of our independent variable was, in fact, large.

Although learning about power after the fact can be important, particularly when we obtain a nonsignificant outcome based on NHST, ideally power
Comparing Means in Multiple-Group Experiments

As we noted, knowing that “something happened” in a one-factor, multiple-group experiment is often not very interesting. We generally do research, or at least we should, with more specific hypotheses in mind than “this variable will have an effect” on the dependent variable. Neither the results of the omnibus \(F \), nor a measure of overall effect size, tell us which means are significantly different from which other means. We cannot, for instance, look at the four means in our memory experiment and judge that the “imagery” mean is significantly different from the “story” mean. The results of the omnibus \(F \) simply tell us there is variation present among all the groups that is larger than would be expected by chance in this situation.

We can suggest two complementary ways to learn more about what happened in a multiple-group, single-factor experiment. One approach is to examine the probable pattern of population means by calculating 95% confidence intervals for the mean estimates in our experiment. This approach was illustrated in Chapter 11 when we showed how confidence intervals could be used to compare means in a multiple-group experiment. Confidence intervals can be used to make decisions about the probable differences among population means that are estimated by the means of our experimental groups. These decisions are made by examining whether confidence intervals overlap, and if they do, to what degree they overlap (see especially Box 11.5). Remember that the width of the confidence intervals provides information about the precision of our estimates.

The construction of confidence intervals for the memory experiment follows the procedure outlined in Chapter 11. Because the square root of the error MS from the ANOVA summary table is equivalent to \(s_{\text{pooled}} \), we can define the 95% confidence interval as

\[
95\% \ CI = \bar{X} \pm \left[\sqrt{\frac{\text{MS}_{\text{error}}}{n}} \right] (t_{\text{crit}})
\]

where \(t_{\text{crit}} \) is the value for \(t \) with degrees of freedom associated with the \(\text{MS}_{\text{error}} \).
In our example, the degrees of freedom for MS_{error} are 16 (see ANOVA Summary Table) and t_{crit} at the .05 level (two-tailed test) is 2.12. Therefore,

$$95\% \text{ CI} = \bar{X} \pm \left[\sqrt{\frac{(2.33/5)}{16}} \right] (2.12) = \bar{X} \pm (\sqrt{.466})(2.12) = \bar{X} \pm (.683)(2.12)$$

$$= \bar{X} \pm 1.45$$

Results based on the construction of confidence intervals for the memory experiment are shown in Figure 12.1. You should be able by now to interpret these results, but see Box 11.5 in Chapter 11 if you need a refresher.

A second approach makes use of NHST and focuses on a small set of two-group comparisons in order to specify the source of the overall effect of our independent variable. A comparison of two means allows the researcher to focus on a particular difference of interest. These comparisons can be quite sophisticated, for example, comparing the average of two or more groups in an experiment with the mean of another group or the average of two or more other groups. However, most of the time we will be interested in the difference between just two means that are represented by individual groups. These two-mean comparisons are usually made after we have determined that our omnibus F-test is statistically significant.

One approach for carrying out comparisons of two means is to use a t-test; however, there is a slight modification in the way that t is calculated when comparing means in a multiple-group experiment. Specifically, we want to use a pooled variance estimate based on the within-group variation estimate (MS_{error}) found in our omnibus F-test. That is, our variance estimate uses information obtained from all the groups in our experiment, not just the two groups of interest. Therefore, the formula for this t-test is

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{[MS_{\text{error}}]\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}}$$
The value for the MS_{error} is obtained from the ANOVA Summary Table of our omnibus F-test, and the degrees of freedom for our comparison t-test are those associated with the MS_{error} [or $k(n - 1)$, where k = number of groups]. For example, the MS within groups (error) for the analysis reported in Table 12.3 is 2.33 with 16 degrees of freedom [$4(5 - 1) = 16$].

One comparison of two means we could make for the memory experiment is to compare the mean performance for the memory-training groups (combined) and the control group. The mean retention for the three memory training groups is 13.67 ($n = 15$), and the mean for the control group is 10.00 ($n = 5$). We can ask, does memory training, regardless of type (i.e., story, imagery, rhymes), lead to better memory retention than no memory training (control)? The null hypothesis is that the two population means do not differ (and the sample means differ by chance alone). When the appropriate values are substituted into the formula for t given above, we observe a statistically significant effect, $t(16) = 4.66$, $p = .0003$. Thus, memory training in this experiment, regardless of type, resulted in better memory retention for the words compared to no training. You can see that this statement is more specific than the statement we could make based on the omnibus F test, in which we could say only that the variation across the four conditions of the experiment was larger than that expected based on chance alone.

Cohen’s d may be calculated for comparisons of two means using the results of the t-test. The formula for Cohen’s d in this situation is

$$d = \frac{2(t)}{\sqrt{df_{\text{error}}}}$$

For the comparison between the three memory-training groups and the control group, substituting the value of 4.66 into the formula and with 16 df_{error}, the effect size, d, is 2.33. According to Cohen’s criteria for effect sizes, this can be interpreted as a large effect of memory instruction relative to no instruction.

When using a t-test we are seeking to make a decision about rejecting or not rejecting the null hypothesis with a specific probability (e.g., $p = .05$). As noted previously, the exact probability associated with the outcome of NHST can be important when interpreting results (e.g., Posavac, 2002). The lower the exact probability, the greater is the likelihood that an exact replication would permit rejecting the null hypothesis at $p < .05$ (see Zechmeister & Posavac, 2003). Minimally, we want to report the lowest probability for statistical significance for which we have information. (Computers automatically give the exact probability of our test result.)

The results of the t comparison also permit us to contrast results with previous studies in two ways. First, we can note whether our experiment’s findings for statistical significance are similar to those observed in a previous experiment. That is, did we replicate a statistically significant finding? Second, we can calculate an effect size (e.g., Cohen’s d) for this two-mean comparison that may be compared with effects obtained in previous experiments, perhaps as part of a meta-analysis. Neither of these contrasts is easy to do using confidence intervals. That is, unlike NHST, confidence intervals do not provide
an exact probability associated with a difference seen in our experiment and the calculation of an effect size is more directly carried out following a t-test (see Chapter 11).

In summary, we encourage you to look at your data and differences between means using more than one statistical technique, seeking evidence for “what happened” from different approaches to data analysis.

It will be necessary, of course, to prepare a written report of the results of your experiment. In Chapter 13 we provide you with help doing just that and model a typical results statement based on the recommendations of the APA Publication Manual (2010).

Repeated Measures Analysis of Variance

- The general procedures and logic for null hypothesis testing using repeated measures analysis of variance are similar to those used for independent groups analysis of variance.
- Before beginning the analysis of variance for a complete repeated measures design, a summary score (e.g., mean, median) for each participant must be computed for each condition.
- Descriptive data are calculated to summarize performance for each condition of the independent variable across all participants.
- The primary way that analysis of variance for repeated measures differs is in the estimation of error variation, or residual variation; residual variation is the variation that remains when systematic variation due to the independent variable and subjects is removed from the estimate of total variation.

The analysis of experiments using repeated measures designs involves the same general procedures used in the analysis of independent groups design experiments. The principles of NHST are applied to determine whether the differences obtained in the experiment are larger than would be expected on the basis of error variation alone. The analysis begins with an omnibus analysis of variance to determine whether the independent variable has produced any systematic variation among the levels of the independent variable. Should this omnibus analysis prove statistically significant, confidence intervals and comparisons of two means can be made to find the specific source of the systematic variation—that is, to determine which specific levels differed from each other. We have already described the logic and procedures for this general analysis plan for experiments that involve independent groups designs. We will focus in this section on the analysis characteristics specific to repeated measures designs and describe an example ANOVA summary table. The data used to illustrate this analysis are based on the time-perception experiment described in Chapter 7 and you may wish to review that discussion before proceeding.

Summarizing the Data Recall that in a repeated measures design, each participant experiences every condition of the experiment. In a complete design, each participant experiences every condition more than once; in an incomplete
PART V: Analyzing and Reporting Research

In Chapter 7, we described an experiment in which participants estimated the duration of four time intervals (12, 24, 36, and 48 seconds) in a complete repeated measures design. For example, on a single trial, participants experienced a randomly determined time interval (e.g., 36 seconds) and then were asked to estimate the duration of the interval.

The first step is to calculate a score to summarize each individual’s performance in each condition. In the time-perception experiment, participants experienced each condition six times; thus, with four conditions in the experiment, each participant made 24 estimates. A median was used to summarize each participant’s performance in each of the four conditions. The next step in summarizing the data is to calculate descriptive statistics across the participants for each of the conditions. The means and standard deviations (in parentheses) appear in Table 12.4. (See also Table 7.3).

The focus of the analysis was on whether the participants could discriminate intervals of different lengths. The null hypothesis for an omnibus analysis of variance for the data in Table 12.4 is that the population means estimated for each interval are the same. To perform an F-test of this null hypothesis, we need an estimate of error variation plus systematic variation (the numerator of an F-test). The variation among the mean estimates across participants for the four intervals provides the information we need for the numerator. We know, that if the different interval lengths did systematically affect the participants’

Table 12.4

DATA MATRIX AND ANALYSIS OF VARIANCE SUMMARY TABLE FOR A REPEATED MEASURES DESIGN EXPERIMENT

<table>
<thead>
<tr>
<th>Participant</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>21</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>15</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>23</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>15</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>36</td>
<td>69</td>
<td>60</td>
</tr>
</tbody>
</table>

Mean (SD) 12.6 (2.0) 22.0 (7.7) 38.0 (16.3) 39.4 (10.5)

Note: Each value in the table represents the median of the participants’ six responses at each level of the interval-length variable.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>4</td>
<td>1553.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Interval length</td>
<td>3</td>
<td>2515.6</td>
<td>838.5</td>
<td>15.6</td>
<td>.000</td>
</tr>
<tr>
<td>Residual (error variation)</td>
<td>12</td>
<td>646.9</td>
<td>53.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>4716.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
judgments, then the mean estimates for the intervals would reflect this systematic variation. To complete the F-test, we also need an estimate of error variation alone (the denominator of the F-test). The source of variation in the repeated design is the differences in the ways the conditions affect different participants. This variance estimate is called residual variation. See Box 12.4.

Interpreting the ANOVA Summary Table The analysis of variance summary table for this analysis is presented in the lower portion of Table 12.4. The computations of a repeated measures analysis of variance would be done using a statistical software package on a computer. Our focus now is on interpreting the values in the summary table and not on how these values are computed. Table 12.4 lists the four sources of variation in the analysis of a repeated measures design with one manipulated independent variable. Reading from the bottom of the summary table up, these sources are (1) total variation, (2) residual variation, (3) variation due to interval length (the independent variable), and (4) variation due to subjects.

As in any summary table, the most critical pieces of information are the F-test for the effect of the independent variable of interest and the probability associated with that F-test assuming the null hypothesis is true. The important F-test in Table 12.4 is the one for interval length. The numerator for this F-test is the mean square (MS) for interval length; the denominator is the residual MS. There are four interval lengths, so there are 3 degrees of freedom (df) for the numerator. There are 12 df for the residual variation. We can obtain the df for the residual variation by subtracting the df for subjects and for interval length from the total $df(19 – 4 – 3 = 12)$. The obtained F of 15.6 has a probability under the null hypothesis of .0004, which is less than the .05 level of significance we have
chosen as our criterion for statistical significance. So we reject the null hypothesis and conclude that the interval length was a source of systematic variation. This means that we can conclude that the participants’ estimates did differ systematically as a function of interval length.

Figure 12.2 shows 95% confidence intervals around the means in the time-perception experiment. The procedure for constructing these intervals is the same as that for the independent groups experiment. Intervals were constructed using the MS_{error} (residual) in the omnibus ANOVA (as recommended by Loftus & Masson, 1994). That is,

$$95\% \text{ CI} = \bar{X} \pm \left[\sqrt{\frac{MS_{\text{error}}}{n}} \right] (t_{\text{crit}})$$

where t_{crit} is the value of t with the degrees of freedom associated with the MS_{error} (residual). The interpretation of confidence intervals in the repeated measures design is the same as that of the independent groups design (see Chapter 11).

Effect Size Measures As we mentioned previously, it is a good idea to include measures of effect size for your analyses. A typical measure of effect size for a repeated measures design is the strength of association measure called eta squared (η^2). It may be calculated by dividing the sum of squares for the within-subjects effect by the combined sums of squares for the within-subjects effect and residual or error. For our sample study,

$$\text{eta squared (}\eta^2) = \frac{SS_{\text{effect}}}{SS_{\text{effect}} + SS_{\text{error}}} = \frac{2515.6}{2515.6 + 646.9} = .795$$

This indicates the proportion of variance accounted for by the independent variable. In some cases, the omnibus analysis of variance would be followed by comparisons of two means as we saw in the independent groups design.
TWO-FACTOR ANALYSIS OF VARIANCE FOR INDEPENDENT GROUPS DESIGNS

The two-factor analysis of variance for independent groups designs is used for the analysis of experiments in which each of two independent variables was manipulated at two or more levels. The logic of complex designs with two independent variables and the conceptual basis for the analysis of these experiments are described in Chapter 8. You also learned to describe both main effects and interaction effects. We will focus in this chapter on the computer-assisted analysis of a factorial design that involves F-tests for the main effect of A, the main effect of B, and the interaction effect, $A \times B$. The two-factor analysis for independent groups is applicable to experiments in which both independent variables are manipulated using a random groups design, in which both independent variables represent the natural groups design, or in which one independent variable represents the natural groups design and the other represents the random groups design. As we noted in Chapter 8, the analysis of a complex design proceeds somewhat differently depending on whether the omnibus F-test does or does not reveal an interaction effect. We first consider the analysis plan when an interaction effect is detected.

Analysis of a Complex Design with an Interaction Effect

- If the omnibus analysis of variance reveals a statistically significant interaction effect, the source of the interaction effect is identified using simple main effects analyses and comparisons of two means.
- A simple main effect is the effect of one independent variable at one level of a second independent variable.
- If an independent variable has three or more levels, comparisons of two means can be used to examine the source of a simple main effect by comparing means two at a time.
- Confidence intervals may be drawn around group means to provide information regarding the precision of estimation of population means.

Consider a hypothetical complex design involving two independent variables ($A \times B$), each involving independent groups (random groups or natural groups). Variable A has two levels and Variable B has three levels. Thus, the design is a 2×3 independent groups design. The details of the experiment need not concern us, although let us assume there are five participants in each group ($n = 5; N = 30$). Table 12.5 shows mean performance for the six groups in this example. By now we trust that you know first to examine the summary statistics to see what trends are present in the data. How would you describe the results seen in Table 12.5? One way would be to state that there was very little difference among means across three levels of B for the first level of A, that is, for level a_1. On the other hand, means changed quite a bit across the same three levels of B for level a_2. Yet another way to describe these results is to use the subtraction method we discussed in Chapter 8 when complex designs were first introduced. Using this method will help determine whether there is an
interaction effect. Examining the differences between the two means for \(a_1 \) and \(a_2 \) at each level of \(B \) (\(b_1 \), \(b_2 \), \(b_3 \)) will show that the three differences (8.4, 3.2, 1.8) are different. This suggests that an interaction effect is present. As you learned in Chapter 8, graphing the means also will help you see the nature of this interaction effect. Let us assume that an omnibus \(F \)-test has confirmed that the interaction effect was statistically significant (\(p < .05 \)).

Once we have confirmed that there is an interaction of two independent variables, we must locate more precisely the source of that interaction effect. There are statistical tests specifically designed for tracing the source of a significant interaction effect. These tests are called simple main effects and comparisons of two means (see Keppel, 1991) and were discussed briefly in Chapter 8. Comparisons between two means were also described earlier in this chapter.

Recall that a simple main effect is the effect of one independent variable at one level of a second independent variable. In fact, one definition of an interaction effect is that the simple main effects across levels are different. In a \(2 \times 3 \) design there are actually five simple main effects. Three of the simple main effects are represented by the effect of Variable A at each level of Variable B. The other two simple main effects are represented by the effect of Variable B at each level of Variable A. Which set of simple main effects are chosen for analysis will depend on the rationale behind the experiment. That is, it may be more important for interpreting the results to highlight one set of simple main effects more than another. Of course, finding that simple main effects are different for levels of either variable indicates an interaction effect.

How do we compute a simple main effect? Statistical software packages do not always permit simple main effects analyses to be computed and, when they do, can vary in the specific computational procedures that are followed. There are relatively simple ways to do these analyses with a calculator (e.g., Zechmeister & Posavac, 2003). However, let us suggest the following procedure that is easily done using an ANOVA software package.

Consider our example above. Suppose we wish to analyze the simple main effect for the first level of variable A, that is, for \(a_1 \). There are three “groups” (\(a_1 b_1 \), \(a_1 b_2 \), \(a_1 b_3 \)) in this analysis. One approach is to perform a simple (one-way) independent groups ANOVA for these data. In other words, assume that there are three random groups of participants assigned to three levels of an independent variable. Carry out this analysis and identify in the ANOVA Summary Table the mean square (\(MS \)) between groups (i.e., the \(MS \) for the effect of your variable). It is the sum of squares between groups divided by its \(df \), which is the number of groups minus 1, or, in this case, \(3 - 1 \), and \(df = 2 \). To obtain an \(F \)-ratio

<table>
<thead>
<tr>
<th>Variable A</th>
<th>Variable B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>(a_2)</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>18.2</td>
</tr>
</tbody>
</table>

Table 12.5 Mean Performance of Groups in Hypothetical 2 × 3 Design
you want to divide the MS between groups from this analysis by the MS_{error} (within groups) based on the overall F-test that you originally performed when examining effects in the 2×3 complex design. In our example, with 30 participants the df for the MS_{error} in the 2×3 design will be 24, so the critical F is that associated with 2 and 24 degrees of freedom.

Two of the simple main effects in our hypothetical experiment involve three means (i.e., levels a_1 and a_2 across three levels of B). If a statistical analysis reveals a significant simple main effect at one of these levels, then one can conclude that there is a difference among the means (i.e., among the three means at that level of variable A). If that is the case, then the next step is to conduct comparisons of two means to analyze the simple main effect more fully. Comparisons of two means will help determine the nature of the differences among the levels. The statistical analysis for comparison between two means makes use of the t-test as described earlier in this chapter. The MS_{error} from the omnibus 2×3 ANOVA Summary Table is used in the t formula and the df associated with that term (24 in our example) are used to find the critical t value at the .05 level.

If you are carrying out a simple main effects analysis for just two levels of an independent variable, such as comparing mean performance at a_1 and a_2 for the three levels of B, then you may use a t-test as you would for a two-mean comparison. Note that the sample sizes for your two-group t-test are based on the number of participants in each of the two cells that you are contrasting. In our hypothetical experiment $n = 5$ for each group. Finally, as we did with the two-mean comparisons discussed above, you may again use the MS_{error} from the 2×3 ANOVA as the error term for your t-test. Degrees of freedom for this two-group t-test will be that associated with the MS_{error} for your omnibus ANOVA. With two levels, a simple main effect compares the difference between two means and no additional comparisons are necessary.

Once an interaction effect has been thoroughly analyzed, researchers can also examine the main effect of each independent variable. In general, however, main effects are less interesting when an interaction effect is statistically significant.

Analysis with No Interaction Effect

- If an omnibus analysis of variance indicates the interaction effect between independent variables is not statistically significant, the next step is to determine whether the main effects of the variables are statistically significant.
- The source of a statistically significant main effect can be specified more precisely by performing comparisons that compare means two at a time and by constructing confidence intervals.

When the interaction effect is not statistically significant, the next step is to examine the main effects of each independent variable. If the overall main effect for an independent variable is not statistically significant, then there is nothing more to do. However, if a main effect is statistically significant, there are several approaches a researcher may take. For example, if there are three or more levels of the independent variable, the source of a statistically significant main effect
Effect Sizes for Two-Factor Design with Independent Groups

A common measure of effect size for a complex design using ANOVA is eta squared (η^2), or proportion of variance accounted for, which was discussed earlier in the context of single-factor designs. In calculating eta squared, it is recommended that we focus only on the effect of interest (see Rosenthal & Rosnow, 1991). Specifically, eta squared can be defined as

$$\eta^2 = \frac{SS_{effect of interest}}{SS_{effect of interest} + SS_{within}}$$ (see Rosenthal & Rosnow, 1991, p. 352)

Thus, eta squared may be obtained for each of the three effects in an A \times B design.

As noted above (and see Rosenthal & Rosnow, 1991), when the sums of squares for the effects are not available, eta squared can be computed using the F ratio (and df) for each effect of interest.

Role of Confidence Intervals in the Analysis of Complex Designs

The analysis of a complex design can be aided by the construction of confidence intervals for the means of interest. For example, each mean in a 2 \times 3 design can be bracketed with a confidence interval following the procedures outlined in Chapter 11 and earlier in this chapter. Recall that the formula is

Upper limit of 95% confidence interval: $\bar{X} + [t_{.05}\bar{s_{\bar{X}}}]$

Lower limit of 95% confidence interval: $\bar{X} - [t_{.05}\bar{s_{\bar{X}}}]$

When sample sizes are equal, the estimated standard error is defined as

$$s_{\bar{X}} = \frac{s_{\text{pooled}}}{\sqrt{n}}$$ where $n = \text{sample size for each group}$

Because the square root of the MS_{error} from the ANOVA Summary Table is equivalent to s_{pooled}, we can define the 95% confidence interval as

$$95\% \text{ CI} = \bar{X} \pm (t_{.05})\left[\sqrt{(MS_{\text{error}}/\sqrt{n})} \right]$$

where $t_{.05}$ is defined by the degrees of freedom associated with the MS_{error}.
CHAPTER 12: Data Analysis and Interpretation: Part II. Tests of Statistical Significance and the Analysis Story

411

Figure 12.3 shows the confidence intervals around the six means in the hypothetical experiment we introduced above. An examination of the CIs tells us about the precision of our estimates. We want to examine the interval width and the probable pattern of population means by looking to see if the intervals around the sample means overlap and, if so, to what degree they overlap. Recall that a rule of thumb for interpreting confidence intervals suggests that if the intervals around means do not overlap, then the two means would likely be statistically significant if tested using NHST (see Box 11.5 in Chapter 11).

Two-Factor Analysis of Variance for a Mixed Design

The two-factor analysis of variance for a mixed design is appropriate when one independent variable represents either the random groups or natural groups design and the second independent variable represents the repeated measures design. The first independent variable is called the between-subjects factor (here symbolized as A). The second independent variable is called the within-subjects factor (symbolized as B). The two-factor analysis for a mixed design is somewhat of a hybrid of the single-factor analysis for independent groups and the single-factor analysis for the repeated measures designs. This particular complex design was discussed in Chapter 8 when we reported the results of a study by Kaiser et al. (2006) using the emotional Stroop test.

As you should now be aware, it is important to review the appropriate summary statistics and to appreciate the trends in the data before looking at the ANOVA Summary Table. An outline of a typical computer output for a two-factor analysis of variance for a mixed design is presented below. The details of the experiment providing the data for this analysis need not concern us. Be aware that some computer programs separate the output of a mixed design, showing first the output for the between-groups analysis and then the
output for the within-subjects analysis (which includes the interaction effect). You may find that you have to scroll the computer screen to get all of the information.

The summary table is divided into two parts. The “Between subjects” section includes the \(F \)-ratio for the main effect of groups. The form of this part of the table is like that of a single-factor analysis for the independent groups design. The error listed in this section is the within-groups variation. The \(F \)-test for the effect of group was not statistically significant because the obtained probability of .226 was greater than the conventional level of statistical significance of .05. The second part of the summary table is headed “Within subjects.” It includes the main effect of the within-subjects variable of presentation frequency (“Present”) and the interaction of presentation frequency and group. In general, any effect including a within-subjects variable (main effect or interaction effect) must be tested with the residual error term used in the within-subjects design. The \(F \)-test for the interaction effect is less than 1, so was not statistically significant. The main effect of presentation frequency, however, did result in a statistically significant \(F \). (As was true in the analysis of the single-factor within-subjects design, your computer output may include additional information beyond what we have presented here.)

Interpreting the results of a two-factor analysis for a mixed design follows the logic for any complex design. Care must be taken, however, when analyzing a mixed design to use the appropriate error term for analyses beyond those listed in the summary table (i.e., simple main effects, comparisons of two means). For example, if a significant interaction effect is obtained, it is recommended that simple main effects be analyzed by treating each simple effect as a single-factor ANOVA at that level of the second independent variable. If, for instance, we had obtained a significant interaction effect between group and presentation frequency in our sample experiment, a simple main effect for a treatment group would involve carrying out a repeated measures ANOVA for only that group (see Keppel, 1991, for more information on these comparisons).

Effect size estimates in a mixed design also frequently make use of eta squared, that is, an estimate of proportion of variance accounted for by the independent variable. As you have seen, eta squared is defined as the SS effect divided by the SS effect plus the SS error for that effect.

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>(F)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>0.225</td>
<td>1</td>
<td>0.225</td>
<td>1.718</td>
<td>0.226</td>
</tr>
<tr>
<td>Error</td>
<td>1.049</td>
<td>8</td>
<td>0.131</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>(F)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>15.149</td>
<td>2</td>
<td>7.574</td>
<td>58.640</td>
<td>0.000</td>
</tr>
<tr>
<td>Present \times Group</td>
<td>0.045</td>
<td>2</td>
<td>0.022</td>
<td>0.173</td>
<td>0.843</td>
</tr>
<tr>
<td>Error</td>
<td>2.067</td>
<td>16</td>
<td>0.129</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REPORTING RESULTS OF A COMPLEX DESIGN

Reporting results of a complex design follows the general form of a report for a single-factor ANOVA but gives special attention to the nature of an interaction effect when it is present. The following are important elements of a report of the results of a complex design:

—description of variables and definition of levels (conditions) of each;
—summary statistics for cells of the design matrix in text, table, or figure, including when appropriate, confidence intervals for group means;
—report of F-tests for main effects and interaction effect with exact probabilities;
—effect size measure for each effect;
—statement of power for nonsignificant effects;
—simple main effects analysis when interaction effect is statistically significant;
—verbal description of statistically significant interaction effect (when present), referring reader to differences between cell means across levels of the independent variables;
—verbal description of statistically significant main effect (when present), referring reader to differences among cell means collapsed across levels of the independent variables;
—comparisons of two means, when appropriate, to clarify sources of systematic variation among means contributing to main effect;
—conclusion that you wish reader to make from the results of this analysis.

Additional tips for writing a Results section according to APA style requirements can be found in Chapter 13.

SUMMARY

Statistical tests based on null hypothesis significance testing (NHST) are commonly used to perform confirmatory data analysis in psychology. NHST is used to determine whether differences produced by independent variables in an experiment are greater than what would be expected solely on the basis of error variation (chance). The null hypothesis is that the independent variable did not have an effect. A statistically significant outcome is one that has a small probability of occurring if the null hypothesis were true. Two types of errors may arise when doing NHST. A Type I error occurs when a researcher rejects the null hypothesis when it is true. The probability of a Type I error is equivalent to alpha or the level of significance, usually .05. A Type II error occurs when a false null hypothesis is not rejected. Type II errors can occur when a study does not have enough power to correctly reject a null hypothesis. The primary way researchers increase power is by increasing sample size. By using power tables researchers may estimate, before a study is conducted, the power needed to reject a false null hypothesis and, after a study is completed, the likelihood of detecting the effect that was found. The exact probability associated with the result of a statistical test should be reported.
The appropriate statistical test for comparing two means is the \(t \)-test. When the difference between two means is tested, an effect size measure, such as Cohen’s \(d \), should also be reported. The APA Publication Manual strongly recommends that confidence intervals be reported as well as the results of NHST. When reporting the results of NHST, it is important to keep in mind that statistical significance (or nonoverlapping confidence intervals) is not the same as scientific or practical significance. Moreover, neither NHST, confidence intervals, nor effect sizes tell us about the soundness of a study’s methodology. That is, none of these measures alone may be used to state that the alternative hypothesis (that the independent variable did have an effect) is correct. Only after we have examined carefully the methodology used to obtain the data for an analysis will we want to venture a claim about what influenced behavior.

Analysis of variance (ANOVA) is the appropriate statistical test when comparing three or more means. The logic of ANOVA is based on identifying both error variation and sources of systematic variation in the data. An \(F \)-test is constructed that represents error variation and systematic variation (if any) divided by error variation alone. Results of the overall analysis, called an omnibus \(F \)-test, are reported in an ANOVA Summary Table. A large \(F \)-ratio provides evidence that the independent variable had an effect. Effect size measures for a single-factor independent groups design include Cohen’s \(f \) and eta squared (\(\eta^2 \)). Comparisons of two means may be conducted following results of an omnibus \(F \)-test in order to more clearly specify the sources of systematic variation contributing to a significant omnibus \(F \)-test. Confidence intervals, too, may be meaningfully used to complement an ANOVA conducted with data from a multiple-group study and should be reported when the results of NHST are summarized.

A two-factor ANOVA is appropriate when a researcher examines simultaneously the effect on behavior of two or more independent variables in a complex design. When one independent variable represents an independent groups variable (random or natural groups) and another is a repeated measures within-subjects variable, we speak of a mixed design. An omnibus \(F \)-test is carried out to assess both main effects and the interaction effect of variables. When a statistically significant interaction effect is found, the source of the interaction effect may be pursued by conducting simple main effects. A simple main effect is the effect of an independent variable at only one level of a second independent variable. Confidence intervals, too, may be used to help understand the effect of an independent variable in a complex design. A commonly used measure of effect size in a complex design is eta squared.

Key Concepts

- null hypothesis \((H_0) \) 381
- level of significance 381
- Type I error 383
- Type II error 383
- power 384
- \(t \)-test for independent groups 387
- repeated measures (within-subjects) \(t \)-test 387
- ANOVA 393
- single-factor independent groups design 393
- \(F \)-test 394
- omnibus \(F \)-test 394
- eta squared (\(\eta^2 \)) 398
- Cohen’s \(f \) 399
- comparison of two means 401
CHAPTER 12: Data Analysis and Interpretation: Part II. Tests of Statistical Significance and the Analysis Story

REVIEW QUESTIONS

1. What does it mean to say that the results of a statistical test are “statistically significant”?
2. Differentiate between Type I and Type II errors as they occur when carrying out NHST.
3. What three factors determine the power of a statistical test? Which factor is the primary one that researchers can use to control power?
4. Why is a repeated measures design likely to be more sensitive than a random groups design?
5. Describe an advantage of using measures of effect size, and explain how power analysis may be used when a finding is not statistically significant.
6. Why may a statistically significant result be neither scientifically nor practically significant?
7. Outline briefly the logic of the F-test.
8. Distinguish between the information you gain from an omnibus F-test and from comparisons of two means.
9. What is the primary way that a repeated measures ANOVA differs from that of an ANOVA for independent groups?
10. How does a simple main effect differ from an overall main effect?

CHALLENGE QUESTIONS

1. A researcher conducts an experiment comparing two methods of teaching young children to read. An older method is compared with a newer one, and the mean performance of the new method was found to be greater than that of the older method. The results are reported as \(t(120) = 2.10, p = .04 \) \((d = .34)\).

 A. Is the result statistically significant?
 B. How many participants were in this study?
 C. Based on the effect size measure, \(d \), what may we say about the size of the effect found in this study?
 D. The researcher states that on the basis of this result the newer method is clearly of practical significance when teaching children to read and should be implemented right away. How would you respond to this statement?
 E. What would the construction of confidence intervals add to our understanding of these results?

2. A social psychologist compares three kinds of propaganda messages on college students’ attitudes toward the war on terrorism. Ninety \((N = 90)\) students are randomly assigned in equal numbers to the three different communication conditions. A paper-and-pencil attitude measure is used to assess students’ attitudes toward the war after they are exposed to the propaganda statements. An ANOVA is carried out to determine the effect of the three messages on student attitudes. Here is the ANOVA Summary Table:

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>180.10</td>
<td>2</td>
<td>90.05</td>
<td>17.87</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>438.50</td>
<td>87</td>
<td>5.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 A. Is the result statistically significant? Why or why not?
 B. What effect size measure can be easily calculated from these results? What is the value of that measure?
 C. How could doing comparisons of two means contribute to the interpretation of these results?
 D. Although the group means are not provided, it is possible from these data to calculate the width of the confidence interval for the means based on the pooled variance estimate. What is the width of the confidence interval for the means in this study?

3. A developmental psychologist gives 4th-, 6th-, and 8th-grade children two types of critical thinking tests. There are 28 children tested at each grade level; 14 received one form (A or B) of the test. The dependent measure is the percentage correct on the tests. The mean percentage correct for the...
children at each grade level and for the two tests is as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>4th</th>
<th>6th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form A</td>
<td>38.14</td>
<td>63.64</td>
<td>80.21</td>
</tr>
<tr>
<td>Form B</td>
<td>52.29</td>
<td>68.64</td>
<td>80.93</td>
</tr>
</tbody>
</table>

Here is the ANOVA Summary Table for this experiment:

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>17698.95</td>
<td>2</td>
<td>8849.48</td>
<td>96.72</td>
<td>.000</td>
</tr>
<tr>
<td>Test</td>
<td>920.05</td>
<td>1</td>
<td>920.05</td>
<td>10.06</td>
<td>.002</td>
</tr>
<tr>
<td>Grade × Test</td>
<td>658.67</td>
<td>2</td>
<td>329.33</td>
<td>3.60</td>
<td>.032</td>
</tr>
<tr>
<td>Error</td>
<td>7136.29</td>
<td>78</td>
<td>91.49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Draw a graph showing the mean results for this experiment. Based on your examination of the graph, would you suspect a statistically significant interaction effect between the variables? Explain why or why not.

B Which effects were statistically significant? Describe verbally each of the statistically significant effects.

C What are the eta-squared values for the main effects of grade and test?

D What further analyses could you do to determine the source of the interaction effect?

E What is the simple main effect of test for each level of grade?

F Calculate confidence intervals for the six means in the experiment, and draw them around the means in your graph of these results.

Answer to Stretching Exercise

Statements 1 and 5 are True; 2, 3, and 4 are False.

Answer to Challenge Question 1

A Yes. The obtained probability of this result assuming the null hypothesis is true is less than .05, the conventional level of significance.

B The degrees of freedom (df) are reported to be 120. For an independent groups t-test, \(df = n_1 + n_2 - 2 \). Thus, there must have been 122 participants.

C Cohen’s guidelines suggest that an effect size of .20 is a small effect, .50 a medium or average effect, and .80 a large effect. An effect size of .34 is between a small and medium effect.

D The results of NHST do not speak directly to practical significance. If the newer method is much more expensive, too time-consuming to implement, or requires resources (e.g., new reading materials) that are not immediately available, then the practical significance of this finding (at least in the short run) is likely to be small. This may be especially the case because the effect size is not large. Also, the fact that \(p = .04 \) suggests that the probability of replicating this statistically significant finding at the .05 level is not that high. Finally, we would want to examine carefully the methodology of the study to determine that the study was sound, free of confounds and experimenter errors.

E Constructing a confidence interval for the difference between the two population means would provide evidence of the size of the difference between these methods and indicate (based on examining the width of the interval) the precision of the estimation of the difference between two population means.
CHAPTER THIRTEEN

Communication in Psychology

CHAPTER OUTLINE

INTRODUCTION
THE INTERNET AND RESEARCH
GUIDELINES FOR EFFECTIVE WRITING
STRUCTURE OF A RESEARCH REPORT
Title Page
Abstract
Introduction
Method
Results
Discussion
References
Footnotes
Appendices
ORAL PRESENTATIONS
RESEARCH PROPOSALS
INTRODUCTION

Scientific research is a public activity. A clever hypothesis, an elegant research design, meticulous data collection procedures, reliable results, and an insightful theoretical interpretation of the findings are not useful to the scientific community unless they are made public. As one writer suggests most emphatically, “Until its results have gone through the painful process of publication, preferably in a refereed journal of high standards, scientific research is just play. Publication is an indispensible part of science” (Bartholomew, 1982, p. 233). Bartholomew expresses a preference for a “refereed” journal because refereed journals involve the process of peer review. Submitted manuscripts are reviewed by other researchers (“peers”) who are experts in the specific field of research addressed in the paper under review. These peer reviewers decide whether the research is methodologically sound and whether it makes a substantive contribution to the discipline of psychology. These reviews are then submitted to a senior researcher who serves as editor of the journal. It is the editor’s job to decide which papers warrant publication. Peer review is the primary method of quality control for published psychological research.

There are dozens of psychology journals in which researchers can publish their findings. *Psychological Science, Memory & Cognition, Child Development, Journal of Personality and Social Psychology, Psychological Science in the Public Interest,* and *Journal of Clinical and Consulting Psychology* are but a few. Editors’ decisions about which manuscripts will be published are based on (a) the quality of the research and (b) the effectiveness of its presentation in the written manuscript, as assessed by the editor and the peer reviewers. Thus, both content and style are important. Editors seek the best research, clearly described, and set rigorous standards for acceptance. *Typically, only about one of every four manuscripts submitted to the more than two dozen primary APA journals is accepted for publication* (e.g., American Psychological Association, 2012).

In addition to judging a manuscript on its style and content, a journal editor first will decide whether what was submitted is appropriate for this journal. For example, experimental memory studies with animal subjects typically do not get published in a journal emphasizing research on child development. Many sources are available for publication besides those sponsored by APA and APS. However, to begin to get a feel for what is out there, you may want to review descriptions of journals published by these major organizations: www.apa.org/pubs/journals/ and www.psychologicalscience.org/journals/.

Editorial review and the publication process can take a long time. Up to a year (and sometimes longer) may elapse between when a paper is submitted and when it finally appears in the journal. The review of the manuscript can take several months before a decision whether to accept the paper is made. Several months are also required for the publication process between the time the paper is accepted and when it is actually published in the journal. Increasingly, journal articles appear online before they are printed. To provide a more timely means of reporting research findings, professional societies such as the American Psychological Association, the Association for Psychological Science, the Psychonomic Society, the Society for Research in Child Development, and regional
societies such as the Eastern, Midwestern, Southeastern, and Western Psychological Associations sponsor conferences at which researchers give brief oral presentations or present “posters” describing their recent work. Such conferences provide an opportunity for timely discussion and debate among investigators interested in the same research questions. Research that is “in press” (i.e., waiting completion of the publication process) may be discussed, thus giving conference attendees a preview of important, but yet-to-be-published, research findings.

Researchers often obtain financial support in the form of a grant from a government or private agency in order to carry out their research. Grants are awarded on the basis of a competitive review of research proposals. Research proposals also typically are required of graduate students when preparing a master’s thesis or dissertation. A faculty committee reviews the proposal before the thesis or dissertation research is begun. So, too, undergraduate students often are required to prepare a research proposal as part of a research methods or laboratory class in psychology. Finally, researchers at all levels will find that research proposals are required by Institutional Review Boards in order to assess the ethical nature of proposed research at an institution (see Chapter 3). Research proposals require a slightly different style and format from a journal article that reports results of a completed study. We provide suggestions for preparing a research proposal later in this chapter.

Tips on Manuscript Preparation The primary resource for scientific writing in psychology is the sixth edition of the *Publication Manual of the American Psychological Association* (APA, 2010b). Journal editors and authors use this manual to ensure a consistent style across the many different journals in psychology. The manual is an invaluable source for almost any question pertaining to the style and format of a manuscript intended for publication in a psychological journal. It contains information on the appropriate content and organization of a manuscript; the expression of ideas and reducing bias in language; displaying results in tables and figures; reference list format including referencing electronic media; and policies regarding manuscript acceptance and production, including guidelines for electronic submission of manuscripts. The manual also discusses ethical issues in scientific writing (see our discussion of this in Chapter 3). However, APA also acknowledges that neither editorial style nor the technology of publishing is static. Anyone seeking to prepare a manuscript under the APA guidelines should also consult the APA website, which provides updates to the *Publication Manual* and latest changes in APA style and in APA policies and procedures: www.apastyle.org.

The APA website provides a free tutorial on APA basic style, including presentation of a sample manuscript, and answers to frequently asked questions.

What do journal articles, oral presentations, and research proposals have to do with you? If you attend graduate school in psychology, you will likely have to describe your research using all three of these types of scientific
communication. Even if you do not pursue a professional career in psychology, the principles of good written and oral research reports are applicable to a wide variety of employment situations. For example, a memo to your department manager describing the outcome of a recent sales event may have much the same format as a short journal article. Of more immediate concern, you may have to prepare a research proposal and write or deliver a research report in your research methods course. This chapter will help you do these things well.

This chapter is intended primarily to help you get started with manuscript preparation and it is not a substitute for the *Publication Manual of the American Psychological Association* (2010b). What follows is an interpretation of the *Manual* by the authors and publisher (McGraw-Hill), and we recommend you consult the latest edition of the *APA Manual* and the APA website for the most up-to-date, definitive APA style.

THE INTERNET AND RESEARCH

The Internet has already become an indispensable tool for conducting research, but it is also essential for communication among members of the scientific community. For many researchers, *e-mail* is their primary means of communication with colleagues, journal editors, research collaborators, directors of granting agencies, and other professionals. Have a question about an article you just read? Ask the author by sending an e-mail message. E-mailing is simple, efficient, and convenient. The authors of your textbook, for example, can be reached by sending an e-mail message to ZechResearchMethods@gmail.com.

There is also a home page on the Web dedicated to this textbook, which can be accessed for student resources (e.g., practice tests) and information about the authors, changes in editions, additional resources for doing psychological research, and errors or omissions in the current edition, publisher’s address, ordering information, and so on. Visit our page: www.mhhe.com/shaughnessy10.

The Internet also serves students and professional psychologists in many other important ways, including discussion groups, databases, and electronic journals.

Discussion groups, called “Listservs,” allow interested individuals to discuss psychological issues in which they share an interest. The group consists of a “list” of “subscribers” who wish to contribute to an ongoing discussion. List members are immediately “served” any message posted by a subscriber. There are hundreds of Listservs on the Internet that link researchers around the world discussing a wide variety of topics, including addiction, religion, and women’s studies. Some Listservs are open to anyone who wishes to take part in the discussion, including those who want to participate only passively (“lurk”). Other Listservs are open only to individuals with certain credentials (e.g., members of a particular APA division). APA and APS also sponsor discussion groups for students that can be accessed through www.apa.org/apags/ and www.psycho logicalscience.org/apssc/.

Databases on the Internet are just that: electronic data files that are stored on the Internet and that can be accessed electronically. Databases related to medicine, alcoholism, and opinion polls are available, to mention but a few.
Databases are particularly useful when doing archival research (see Chapter 4) and time-series analyses (Chapter 10). Large databases, in which data for hundreds of variables and large numbers of participants are available, have become important to many researchers who seek to answer research questions in psychology (e.g., in clinical, social, and developmental psychology). Electronic access to databases frees researchers from the expense and time needed to collect data that may already be available, thereby eliminating wasteful duplication of researchers’ and participants’ efforts.

Electronic journals are common, and electronic submission of manuscripts is now the norm for journals and for conferences. The wide availability of Internet access and e-mail has facilitated the review process, such that the manuscript submission, peer reviews, and editorial feedback to authors can be completed using the Internet. In addition, some journals are offered exclusively in electronic form. Subscribers receive articles in their electronic mailboxes, and readers can electronically submit their comments on the articles. Current Research in Social Psychology and Prevention and Treatment are examples of electronic journals. Whether submitting manuscripts to electronic or printed journals, authors seeking publication in respected journals should expect peer review of their research.

Guidelines for Effective Writing

Learning to write well is like learning to swim, drive a car, or play the piano. Improvement is unlikely to result solely from reading about how the activity is to be done. Heeding expert advice, though, can help a person get off to a good start. Thus, one key to writing well is getting critical feedback from writing “coaches”—teachers, friends, editors, and even yourself.

Good writing, like good driving, is best done defensively. Assume that whatever can be misunderstood, will be! To avoid these writing accidents, we offer the following tips to consider before you begin writing.

- **KNOW YOUR AUDIENCE.** If you assume your readers know more than they actually do, you will leave them confused. If you underestimate your readers, you risk boring them with unnecessary details. Either risk increases the likelihood that what you have written will not be read. But if you must err, it is better to underestimate your readers.

- **IDENTIFY YOUR PURPOSE.** Journal articles fall within the general category of expository writing. Webster’s Dictionary defines exposition as “discourse designed to convey information or explain what is difficult to understand.” The principal purposes of a journal article are to describe and to convince. You want first to describe what you have done and what you have found and, second, to convince the reader that your interpretation of these results is an appropriate one.

- **WRITE CLEARLY.** The foundation of good expository writing is clarity of thought and expression. As one noted editor emphasized, “It is care in writing that counts” (Cronbach, 1992, p. 391). You will need to work and rework sentences in order to achieve a smooth and logical flow of your ideas. As the Publication Manual notes (p. 65), “The prime objective of scientific reporting is clear communication.”
• **BE CONCISE.** If you say only what needs to be said, you will achieve economy of expression. Short words and short sentences are easier for readers to understand. The best way to eliminate wordiness is by editing your own writing across successive drafts and asking others to edit drafts of your paper.

• **BE PRECISE.** Precision in using language means choosing the right word for what you want to say. It requires choosing words that mean exactly what you intend them to mean. For example, in scientific psychology, *belief* is not the same as *attitude*; nor are *sensations* the same as *feelings*.

• **FOLLOW GRAMMATICAL RULES.** Adherence to grammatical rules is absolutely necessary for good writing because failure to do so distracts the reader and can introduce ambiguity. It also makes you, the writer, look bad and, as a consequence, can serve to weaken your credibility (and your argument) with your reader.

• **WRITE FAIRLY.** As a writer you should also strive to choose words and use constructions that acknowledge people fairly and without bias. The American Psychological Association has outlined its policy regarding bias in the language authors use (*Publication Manual*, 2010b, pp. 70–77):

> Scientific writing must be free of implied or irrelevant evaluation of the group or groups being studied. As an organization, APA is committed both to science and to the fair treatment of individuals and groups, and this policy requires that authors who write for APA publications avoid perpetuating demeaning attitudes and biased assumptions about people in their writing. Constructions that might imply bias of gender, sexual orientation, racial or ethnic group, disability, or age are unacceptable. (pp. 70–71)

The *Publication Manual* (2010b, pp. 70–77) provides important information to help you achieve unbiased communication. The following is only the briefest introduction based on the guidelines found in the *Manual* (see also www.apastyle.org):

(a) Describe people at the appropriate level of specificity. For example, the phrase *men and women* is more accurate than the generic term *man* when referring to human adults. “Chinese Americans” or “Mexican Americans” would be a more specific reference for research participants than would be Asian Americans or Hispanic Americans.

(b) Be sensitive to labels when referring to people, for example, when using terms to refer to people’s racial or ethnic identity. The best way to follow this guideline is to avoid labeling people whenever possible and use wording that preserves participants’ individuality. For example, rather than talk about *the amnesiacs or the demented*, a better option is to refer to “amnesic patients” or “those in a dementia group.” A label that is perceived by the labeled group as pejorative should never be used. In trying to follow this guideline, it is important to remember that preferences for labeling groups of individuals change with time and that people within a group may disagree about what label is preferred. For example,
although some persons indigenous to North America may prefer to be called “Native North Americans,” others may prefer “Indians,” and still others might wish to be called by their specific group name, for example, Navajo, or even more appropriately using their native language, Diné instead of Navajo, for instance.

(c) Write about people in a way that clearly identifies your study’s participants. One way to accomplish this is to describe participants using more descriptive terms such as college students or children rather than the more impersonal term, subjects. Active voice is better than passive voice in acknowledging participation. For example, “the students completed the survey” is preferred over “the survey was administered to the students.”

- WRITE AN INTERESTING REPORT. Scientific writing need not be dull! Clearly, scientific writers do not have the license given a novelist or essayist, nor is this the place to show off what you have learned in a creative writing course. Nevertheless, an effort should be made to write in a way that will interest your reader in what you did, what was found, and what you concluded. One way to try to achieve an appropriate tone in writing your research reports is to strive to tell a good story about your research. Good research makes for good stories, and well-told stories are good for advancing research.

As you make preparations for writing a research report, we urge you to read journal articles reporting research in an area of psychology that interests you. Ultimately, however, you will develop the skills for writing research reports only by actually writing them.

Structure of a Research Report

The structure of a research report serves complementary purposes for the author and for the reader. The structure provides an organization that the author can use to present a clear description of the research and a convincing interpretation of the findings. The reader of a research report can expect to find certain information in each section. If you want to know how an experiment was done, you would look in the Method section; if you want information about the analysis of the data in the study, you would refer to the Results section. A research report consists of the following sections:

- Title Page (with Author Note)
- Abstract
- **Introduction**
- **Method**
- **Results**
- **Discussion**
- References
- Footnotes (if any)
- Tables and Figures
- Appendices (if any)
Title Page

The first page of a research report is the title page. It indicates what the research is about (i.e., the title), who did the research (i.e., the authors), where the research was done (i.e., authors’ affiliation), a brief heading to indicate to readers what the article is about (the “running head”), and an author note. The author note identifies the author’s professional affiliation and contact information, as well as listing any acknowledgments. We discussed the criteria for authorship in Chapter 3; only those who meet the criteria should be listed as authors of a research report. Others who contributed to the research are acknowledged in an author note.

The title is perhaps the most critical aspect of your paper because it is the part that is most likely to be read! By identifying key variables or theoretical issues, the title should clearly indicate the central topic of your paper. Avoid needless words such as “A Laboratory Study of . . . ” or “An Investigation of”

Abstract

The abstract is a concise one-paragraph summary of the content and purpose of the research report. Rules regarding word limits for an abstract differ among scientific journals. Consult the Publication Manual for these guidelines. The abstract of an empirical study typically will identify the following:

(a) the problem under investigation;
(b) the method, including essential information about how the variables were investigated;
(c) the major findings; and
(d) the conclusions and implications of the findings.

The abstract, in other words, should highlight the critical points made in the Introduction, Method, Results, and Discussion sections of the research report. A well-written abstract can have a big influence on whether the rest of a journal article will be read. Abstracts are used by information services to index and retrieve articles, and thus an author should include keywords related to the study.
The *Publication Manual* describes more fully the critical elements of an abstract for empirical studies and also how abstracts should differ for literature reviews, meta-analyses, theory papers, methodological papers, and case studies.

Tips on Writing an Abstract Writing a good abstract is challenging. The best way to meet this challenge is to write it last. By writing the abstract after you have written the rest of the report, you will be able to *abstract*, or paraphrase, your own words more easily.

Introduction

Objectives for the Introduction The Introduction serves three primary objectives:

1. to introduce the problem being studied and to indicate why the problem is important to study;
2. to summarize briefly the relevant background literature related to the study and to describe the theoretical implications of the study; and
3. to describe the purpose, rationale, and design of the present study with a logical development of the predictions or hypotheses guiding the research.

The order in which you address these objectives in your paper may vary, but the order we describe here is a common one.

As mentioned, the Introduction includes a summary of related research studies. This review is not intended to provide an exhaustive literature review. Instead, you should carefully select those studies that are most directly related to your research. In summarizing these selected studies, you should emphasize whatever details of the earlier work will best help the reader understand what you have done and why. You must acknowledge the contributions of other researchers to your understanding of the problem. Of course, if you quote directly from another person’s work, you must use quotation marks (see Chapter 3 for advice about citing others’ work).

Reference is usually made to the work of other researchers in one of two ways. Either you refer to the authors of the article you are citing by their last names, with the year in which the paper was published appearing in parentheses immediately after the names, or you make a general reference to their work and follow it with both the names and the year of publication in parentheses. For example, if you were to cite a study by Alice H. Eagly and Wendy Wood that was published in 2013, you would write either “Eagly and Wood (2013) described the effects of nature and nurture on the development of gender differences as an interactive process” or “Nature and nurture interact to produce gender differences (Eagly & Wood, 2013).” Complete bibliographic information for the Eagly and Wood article, including the title of the article, the journal title, volume number, and specific pages, would appear in the References section at the end of the report. Footnotes are not used to cite references in a research report in psychology. We suggest that you review in Chapter 3 the discussion of ethical issues related to citing references for your work (see Reporting of Psychological Research subsection).
In summary, the problem under investigation, related research findings, and the rationale and design of your study should be introduced in a clear, interesting manner.

Tips on Writing the Introduction In order to write an effective introduction, before you begin to write, be sure that you have articulated for yourself exactly what you did and why. One of the best ways to “test” yourself is to attempt to describe orally to someone unfamiliar with your work the purpose of your study, its relation to other studies in this area (e.g., how your study differs from what is already known), the theoretical implications, and what you hoped to achieve. You will likely find that your listener has questions, and by answering them you will perhaps recognize what needs to be made clear when actually writing your introduction.

Searching the Psychological Literature Whatever your topic or research question, there undoubtedly will come a time when you need to search the psychological literature. For example, although you may have an idea for an experiment, you will want to determine whether the experiment has already been done. Or you may have read an article describing a study on which you would like to base an experiment; thus, to write an introduction it will be important to learn about other, related studies. As you learn more about this area of investigation, you may find that your initial idea for a study may need to be modified. An important source for additional reading is the References section of articles related to your topic.

The primary online database for searching the psychological literature is PsycINFO. PsycINFO can be accessed through online databases such as FirstSearch, InfoTrac, and APA’s website (apa.org). Check with your local library staff to find out what online services are available to you. An electronic database makes it possible to scan the titles and abstracts of articles in the database and to identify all those that contain particular keywords. The most effective approach to this type of search is to have intersecting keywords, both of which need to be present before the computer will “flag” an article. For example, a student was interested in conducting a survey to determine the incidence of rapes and other sexual assaults on dates (i.e., date rapes). The student used the keyword RAPE and the letter string DAT to guide her search. She chose the letter string DAT in order to catch such variants as DATE, DATES, and DATING.

After searching such vast databases multiple times with different keywords, we may become unduly confident that we have identified “all that there is on the subject.” However, it is possible that pertinent information can be missed in any given search of an electronic database. Keywords can also prove tricky. The string DAT identified all studies using the word DATA, so a number of the student’s references provided data about rape—but not solely in the context of dating. When electronic databases are used properly, the advantages of searching the psychological literature using PsycINFO far outweigh their disadvantages.
Method

The second major section of the body of a research report is the Method section. Writing a good Method section can be difficult. It sounds easy because all you have to do is describe exactly how the research was conducted. But if you want to get a sense of how challenging this can be, just try to write a clear and interesting paragraph describing how to tie your shoelaces.

Tips on Writing the Method Section

The key to writing a good Method section is organization. Fortunately, the structure of this section is so consistent across research reports that a few basic subsections provide the pattern of organization you need for most research reports. However, we should address the question that students writing their first research report ask most frequently: “How much detail should I include?” The quality of your paper will be adversely affected if you include either too much or too little detail. That you used a “No. 2 pencil” to record the results is clearly too much detail! A good rule of thumb is: Include enough information so that an interested investigator can replicate your study. Reading the Method sections of journal articles will help you with this writing task. See also the Publication Manual, especially pages 29–32, for help in writing a Method section.

In the Method section you will be describing the number and nature of the participants (subjects) that took part in your study, the particular materials, instrumentation, or apparatus that was used, as well as exactly how you carried out the study (i.e., your “procedure”). These kinds of information typically are presented in different subsections (e.g., Participants, Materials, Procedure) and you should review APA guidelines for the content of these subsections. It is also a good idea to read the Method sections of published journal articles to get a feel for what goes into these subsections.

Results

In many ways this is the most exciting part of a research report because the Results section contains the climax of the research report—the actual findings of the study. For many students, though, the excitement of describing the climax is blunted by concern about the necessity of reporting statistical information in the Results section. The best way to alleviate this concern, of course, is to develop the same command of statistical concepts that you have of other concepts. A helpful first step is to adopt a simple organizational structure to guide your writing of the Results section (see Table 13.1).

You should use the Results section to answer the questions you raised in your Introduction. However, the guiding principle in the Results section is to “stick to the facts, just the facts.” You will have the opportunity to move beyond just the facts when you get to the Discussion section.

Reporting Statistics

The raw data of your study (e.g., individual scores) should not be included in the Results section. Rather, you will want to use summary
statistics (e.g., means, standard deviations) and report results of all inferential statistical tests related to your hypotheses (both favorable and unfavorable!). For complex studies, the use of tables and figures is often important. The Results section lays the groundwork for the conclusions you report in the Discussion section.

Tips on Writing a Good Results Section

We suggest you follow these steps when writing your Results section.

- **Step 1.** A Results section paragraph begins by stating the purpose of the analysis. The reason(s) for doing an analysis should be stated succinctly; often, no more than a phrase is necessary. In the sample paragraph, for example, the purpose of the analysis is “to examine retention as a function of the instructions given at the time of study.”

- **Step 2.** The second step in writing a Results section paragraph is to identify the descriptive statistic (e.g., mean, median, total frequency) that will be used to summarize the results for a given dependent variable. For example, in the sample paragraph the researchers used mean numbers of words recalled when summarizing results.

TABLE 13.1

<table>
<thead>
<tr>
<th>Structure of a Typical Paragraph in the Results Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State the purpose of the analysis.</td>
</tr>
<tr>
<td>2. Identify the descriptive statistic to be used to summarize results.</td>
</tr>
<tr>
<td>3. Present a summary of this descriptive statistic across conditions in the text itself, in a table, or in a figure.</td>
</tr>
<tr>
<td>4. If a table or figure is used, point out the major findings on which the reader should focus.</td>
</tr>
<tr>
<td>5. Present the reasons for, and the results of, confidence intervals, effect sizes, and inferential statistical tests.</td>
</tr>
<tr>
<td>6. State the conclusion that follows from each test, but do not discuss implications. These belong in the Discussion section.</td>
</tr>
</tbody>
</table>

Sample paragraph

To examine retention as a function of instructions given at the time of study, the number of words recalled by each participant in each instruction condition was determined. Words were scored as correct only if they matched a word that had appeared on the target list. Misspelled words were accepted if the spelling was similar to a target item. Mean numbers of words recalled (with the corresponding standard deviations) were: 15.6 (1.44), 15.2 (1.15), and 10.1 (1.00) in the bizarre imagery condition, the standard imagery condition, and the control condition, respectively. The 95% CIs were: bizarre imagery [13.18, 18.02], standard imagery [12.78, 17.62], control [7.68, 12.52]. Overall, the mean differences were statistically significant, $F(2, 72) = 162.84, p < .001, MSE = 1.47, \eta^2 = .82$. Comparisons of the confidence intervals revealed that both of the imagery conditions differed from the control condition, but that the two imagery conditions did not differ. In conclusion, retention by participants instructed to use imagery was higher than that by participants given no specific study instructions, but retention did not differ for the two types of imagery instructions.
• **Step 3.** The third step is to present a summary of this descriptive statistic across conditions. Measures of central tendency should be accompanied by corresponding measures of variability such as reporting a standard deviation along with each mean. A measure of effect size is also strongly recommended. If there are only two or three conditions in your experiment, this summary can be presented in the text itself. If you have more data to summarize, you will need to present your findings in either a table or a figure (graph). We will describe the procedures for constructing tables and figures later in this section.

• **Step 4.** A table or figure should not be considered self-sufficient. Your reader will need help to gain as much information as possible from a table or figure. You are in the best position to offer this help because you are the person most familiar with your results. You should direct your readers’ attention to the highlights of the data in the table or figure, focusing especially on those aspects of the results that are consistent (or discrepant) with the hypotheses you proposed in the introduction. Usually the same data are not reported in both a table and a figure. Whichever you choose, be sure to highlight in the text itself the critical results that the table or figure reveals.

• **Step 5.** The fifth step in writing a paragraph of the Results section is to present the results of inferential statistical tests. The following information should always be reported with any inferential statistical test: the name of the test (usually indicated by a symbol such as \(t\), \(r\), or \(F\)); the degrees of freedom for the test (presented in parentheses after the test is identified); the value of the test statistic that you obtained; the exact probability of the test outcome (unless \(p\) value is less than .001, as in the sample paragraph); and measures of effect size. You should also include the mean square error (MSE) as illustrated in Table 13.1 (see sample paragraph). The MSE (the denominator of the \(F\) ratio) permits interested readers to calculate additional statistics from your results and facilitates subsequent meta-analyses. As we discussed in Chapters 11 and 12, reporting confidence intervals is strongly recommended. Again, refer to the sample paragraph for examples of how this information is incorporated into the Results section.

• **Concluding Step.** The final step in writing a paragraph in the Results section is to state a brief conclusion that follows from each test you report. The last sentence in the sample Results paragraph in Table 13.1 illustrates how this might be done. A conclusion may seem obvious, but appropriate concluding statements are essential in the Results section.

Each paragraph of the Results section follows the structure outlined in Table 13.1. The idea is not to overload your reader with statistics. The challenge is to select those findings that are most critical, being sure to report all the data pertinent to the questions raised in your introduction. Before concluding our discussion of the Results section, we will briefly describe the basic procedures for constructing tables and figures.
Presenting Data in Tables Tables are an effective and efficient means for presenting large amounts of data in concise form. The table should supplement and not duplicate information in the text of the paper, but it should be well integrated into the text. The tables in a research report are numbered consecutively. Numbering the tables makes it easy to refer to them in the text by their numbers. Each table should also have a brief explanatory title, and the columns and rows of the table should be labeled clearly. The data entries in the table should all be reported to the same degree of precision (i.e., all values should have the same number of decimal places), and the values should be consistently aligned with the corresponding row and column headings. You will want to refer to the Publication Manual in order to see the various ways tables are constructed according to APA stylistic requirements (see especially Chapter 5 of the Manual).

Presenting Data in Figures Figures, like tables, are a concise way to present large amounts of information. A figure has two principal axes: the horizontal axis, or x-axis, and the vertical axis, or y-axis. Typically, the levels of the independent variable are plotted on the x-axis, and those of the dependent variable are plotted on the y-axis. When there are two or more independent variables, the levels of the second and succeeding independent variables serve as labels for the data within the figure or are indicated in a figure legend. In Figure 13.1 the values of the dependent variable (mean number recalled) are plotted on the y-axis, and the levels of one independent variable (serial position) are indicated on the x-axis. The levels of the second independent variable (cued [C] or noncued [NC]) label the data within the figures, and the levels of the third independent

FIGURE 13.1 Mean number of words recalled (of a possible 10) as a function of serial position within blocks, cuing (C = Cued; NC = Noncued), and instructional condition.
variable (instructions) serve as the headings for each of the two separate panels of the figure.

Two general types of figures are commonly used in psychology: line graphs and bar graphs. The most common type of figure is the line graph like the one shown in Figure 13.1. When the independent variable plotted on the x-axis is a nominal-scale variable, however, a bar graph is often used. For example, if you were plotting the mean GPA (dependent variable) of students enrolled in different academic majors (independent variable), you could use a bar graph. An illustration of a bar graph is presented in Figure 13.2. There are alternative ways to construct useful graphic presentations and you should consult the Publication Manual (Chapter 5) to see various options. All figures must be drawn clearly and labeled appropriately so that readers can understand exactly what is represented.

Discussion

The Discussion section, unlike the Results section, contains “more than just the facts.” It is now time to draw out the implications of your research, emphasize particular results that support your hypothesis and comment critically on any results that do not support it. In other words, make a final summation to the jury of readers.

The Discussion begins with a succinct statement of the essential findings. You do not repeat the descriptive statistics in this summary, nor do you necessarily refer to the statistical analyses of the findings. You will want to compare and contrast your results with the findings of others in this area, especially those whom you cited previously in the introduction. Be “up front” with your reader and admit any deficiencies in your design or analysis that could lead to different interpretations. One good way to identify limitations or problems is to
try to anticipate criticisms of your study that others might make. If your results are not consistent with your original hypotheses, you should suggest an explanation for these discrepancies.

Be careful to keep the statements you make in the discussion consistent with the data reported in the Results. For instance, you should not report that one group did better than another if the difference between the means for these groups was not reliable—at least not without some qualification of what you mean by “better.”

If appropriate, conclude the Discussion by proposing additional research that should be done on the problem you are investigating. Strive to be specific about what research should be done and why it needs to be done. That is, be sure to explain what the new research should reveal that we do not already know. The reader will not learn much if you say, “It would be interesting to do this experiment with younger participants.” The reader can learn much more if you explain how you would expect the results to differ with younger participants and what you would conclude if the results of the proposed experiment were to turn out as expected.

Tips on Writing the Discussion Section

One possible outline for the Discussion section is as follows:

- A brief review of the problem and your hypotheses (expectations).
- A summary of the major results supporting (or not supporting) your hypothesis.
- Comparison with findings from other researchers in this area.
- Comments on the limitations of your study (and there are always some!).
- Suggestions for future research (be specific!).
- Comments on the importance of the findings and, if appropriate, possible practical implications.

References

Four types of references typically are found in the majority of research reports: journal articles, books, chapters in edited books, and Internet sources. Table 13.2 illustrates how these references would be cited in the References section of a manuscript. The specific formatting rules when reporting these references and many other types according to APA style are best reviewed by consulting the *Publication Manual*. The free tutorial found at www.apastyle.org also can help you with formatting references.

The rapid spread of electronic publishing has led to the need for electronic “identifiers” for information retrieved from the Internet. For example, anyone using the Internet will be familiar with URLs (uniform resource locators). They typically begin with “http://” and are followed by a host name (often preceded by www.), path, and title of document. For example, the URL for a very helpful online source to help you find relevant research on psychological topics (“Library Research in Psychology”) is: http://www.apa.org/education/
undergrad/library-research.aspx. Should you cite information retrieved using
the Internet, it is important that you provide specific information required to
locate the source.

A more recent form of electronic identifier is a digital object identifier (DOI). The DOI is an alphanumeric string that identifies the content and electronic
location of an article or other information source found on the Internet. The DOI (or lower case, doi) is usually found on the title page of a published article. APA stylistic guidelines indicate that whenever a DOI is available, you should
include it as part of your citation in the References section. An easy way to use
the DOI is to add it after http://dx.doi.org/ when searching. Thus, the article
in Table 13.2 with the identifier 10.1037/0003-066X.60.6.581 can be found by
using http://dx.doi.org/10.1037/0003-066X.60.6.581 with your search engine. Try using this DOI and see if you find the Hyde (2005) reference. Once again, we
refer you to the Publication Manual for a more complete discussion of electronic
sources and recommended reference formats.

You can save your readers much aggravation if you follow the reference
formats closely and proofread your reference list carefully. The references are
listed in alphabetical order by the last name of the first author of each article.

Footnotes

Footnotes are rare in journal articles and even more rare in students’ research reports. When they do appear, they should be numbered consecutively in the
text and placed on a separate page following the References section.

<table>
<thead>
<tr>
<th>TABLE 13.2</th>
<th>ILLUSTRATION OF FORMAT OF REFERENCE CITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal Article without DOI</td>
<td></td>
</tr>
<tr>
<td>Journal Article with DOI</td>
<td></td>
</tr>
<tr>
<td>Book</td>
<td></td>
</tr>
<tr>
<td>Chapter in an Edited Book</td>
<td></td>
</tr>
<tr>
<td>Technical or Research Report Retrieved Online</td>
<td></td>
</tr>
</tbody>
</table>
Appendices

Appendices are rare in published research articles, but they are a bit more common in students’ research reports. When they are intended for a published article, each appendix begins on a separate manuscript page, and they appear at the end of the paper following the references. (Note: Instructors may require you to submit an appendix including your raw data, the worksheets for a statistical analysis, or the computer printout of the analyses. The appendix can also be used to provide a verbatim copy of the instructions to participants or a list of the specific materials used in an experiment.) Each appendix is identified by letter (A, B, C, and so on), and any reference to the appendix in the body of the text is made using this letter. For instance, you might write, “The complete instructions can be found in Appendix A.”

Tips on Submitting Your Manuscript to a Journal Editor The Publication Manual provides important information on the publication process, including descriptions of editorial policies, author responsibilities, a manuscript checklist, a sample cover letter to a journal editor, and the APA Compliance with Ethical Principles Form that may be required when submitting manuscripts to APA journals. (Tables 1, 2, and 3 in the Appendix to the Manual contain extensive information recommended for inclusion in manuscripts reporting original data collection. A review of these critical elements will help even experienced researchers identify what may be missing from their research report.)

Oral Presentations

Research psychologists regularly attend professional conferences and conventions at which they present brief oral descriptions of their research. Similarly, students may give oral presentations of their research either in class or at a department research symposium involving students from a number of different classes or at undergraduate research conferences. All of these settings share one characteristic—the time allowed for the presentation is usually no more than 10 to 15 minutes. In this length of time it is impossible to provide the detailed description that is included in a journal article.

A good oral presentation provides a succinct overview of the problem, the methodology, major results, and conclusions. It is in many ways like an expanded abstract of your study. Researchers frequently make available written copies of their study that contain more details than can be given in the oral presentation. This frees the presenter to go over the highlights of a study and not get bogged down in the fine details of the method or the analyses. Resist reporting specific statistical outcomes (“the F value from the ANOVA was 4.67”). Simply report that a “significant difference was obtained” or that “conditions differed reliably.” Listeners can look up the specifics in your written handout.
RESEARCH PROPOSALS

In the last section of this chapter we discuss writing again—but this time the writing of research proposals. As we mentioned at the beginning of this chapter, researchers must often seek financial support for their research by submitting grant proposals to private or government agencies. Students in research methods classes are also sometimes required to submit proposals describing research they might do. Even if a written proposal is not required, only a foolhardy researcher would tackle a research project without careful prior consideration of related literature, possible practical problems, workable statistical analyses of the data, and eventual interpretation of the expected results. This careful prior consideration will help you develop a research project that is feasible and one that can be analyzed and interpreted appropriately.

The purpose of a research proposal is to ensure a workable research design that, when implemented, will result in an interpretable empirical finding of significant scientific merit. No research proposal, no matter how carefully prepared, can guarantee important results. Researchers learn early in their careers about Murphy’s Law. In essence, Murphy’s Law states, “Anything that can go wrong will go wrong.” Nonetheless, it is worthwhile to develop a research proposal, if only to avoid the research problems that are avoidable.

Tips on Giving an Effective Oral Presentation

Because it is an “oral” presentation does not mean that you should omit preparing a complete written version. Be careful, however, to write as you would speak and not, for example, as you would write a journal article. Use simple sentences and mark places where you might want to pause or refer to a visual aid. Most of us speak faster when nervous, so pause marks on your pages will remind you to speak at a moderate pace and pause occasionally. The written version you use for speaking need not (and perhaps should not) be the same as a written handout distributed to your audience. It is up to you whether to memorize your presentation before giving it, perhaps with helpful cues from PowerPoint visuals, or to read it. If you are not comfortable with public speaking, do not be embarrassed to read it. Given very restricted time limits, your presentation must hit only the highlights of your study. Once you are satisfied with your written presentation, the next step is to rehearse it aloud to yourself so that you become familiar with what you will be saying and can stay within your time limit. Then, you will want to practice your talk before a critical (but friendly) audience. Ask members of your practice audience what they didn’t understand or would like clarified. Could they follow what you reported doing and what you found? Did you speak loudly enough? Were your visuals (if any) clear and effective? Can they repeat back your main points? Were you within your allowed time limit? Finally, when delivering your presentation before a “real” audience, be sure to leave time for questions.
A written research proposal follows the general format of a journal article, but the headings of the various sections are slightly different. The proposal should include the following main sections:

- Introduction
- Method
- Expected Results and Proposed Data Analysis Plan
- Conclusions
- References
- Appendix
- Information for Institutional Review Board

An abstract is not included in a research proposal. The introduction of a research proposal is likely to include a more extensive review of the relevant literature than is required for a journal article. The statement of the research problem and the logical development of hypotheses in a research proposal are the same as required in a journal article. Similarly, the Method section in the proposal should be as close as possible to the one that will accompany the finished research.

The section of the proposal titled “Expected Results and Proposed Data Analysis Plan” should include a brief discussion of the anticipated results of the research. In most cases the exact nature of the results will not be known. Nevertheless, you will always have some idea (in the form of a hypothesis or prediction) of the outcome of the research. The Expected Results section may include tables or figures of the results as you expect (hope) that they will come out. The expected results that are most important to the project should be highlighted. A proposed data analysis plan for the expected results should be in this section. For example, if you are proposing a complex design, you would need to indicate which effects you will be testing and what statistical tests you will use. Reasonable alternatives to the expected results should also be mentioned, as well as possible problems of interpretation that will arise if the results deviate from the research hypothesis. The body of a research proposal ends with a Conclusions section that provides a brief statement of the conclusions and implications based on the expected results.

The References section should be in exactly the same form as the one you would submit with the final report. An appendix should complete the research proposal and should include a list of all materials that will be used in doing the study. For example, if you are conducting an experiment involving students’ memory for lists of words, the actual word lists and instructions to participants should be included.

Finally, a research proposal should include material to be submitted to an Institutional Review Board (IRB) or similar committee designed to review the ethics of the proposed research (see Chapter 3). Your institution no doubt has standard forms that are to be submitted with your proposal.
Statistical Tables

APPENDIX OUTLINE

<table>
<thead>
<tr>
<th>Table A.1</th>
<th>Table of Random Numbers</th>
<th>Table A.3</th>
<th>Critical Values of the F-Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.2</td>
<td>Selected Values from the t-Distribution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use the Table of Random Numbers to Obtain a Simple Random Sample

1. Number each element in the sampling frame.
2. Decide on the sample size.
3. Choose a starting point in the Random Numbers Table blindly (e.g., by closing your eyes and putting a pencil point on the table).
4. Identify numbers in the table by moving across (or up or down) the table. Note: The number of digits in a number corresponds to the number of digits in the size of the sampling frame (e.g., a sampling frame of size 147 means that you are looking for 3-digit numbers between 001 and 147, ignoring others).
5. Continue until you have the sample size you want. Then list the elements corresponding to the selected numbers.

TABLE A.2 SELECTED VALUES FROM THE t DISTRIBUTION

Instructions for use: To find a value of t, locate the row in the left-hand column of the table corresponding to the number of degrees of freedom (df) associated with the standard error of the mean, and select the value of t listed for your choice of α (nondirectional). The value given in the column labeled $\alpha = .05$ is used in the calculation of the 95% confidence interval, and the value given in the column labeled $\alpha = .01$ is used to calculate the 99% confidence interval.

<table>
<thead>
<tr>
<th>df</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
<th>df</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.71</td>
<td>63.66</td>
<td>18</td>
<td>2.10</td>
<td>2.88</td>
</tr>
<tr>
<td>2</td>
<td>4.30</td>
<td>9.92</td>
<td>19</td>
<td>2.09</td>
<td>2.86</td>
</tr>
<tr>
<td>3</td>
<td>3.18</td>
<td>5.84</td>
<td>20</td>
<td>2.09</td>
<td>2.84</td>
</tr>
<tr>
<td>4</td>
<td>2.78</td>
<td>4.60</td>
<td>21</td>
<td>2.08</td>
<td>2.83</td>
</tr>
<tr>
<td>5</td>
<td>2.57</td>
<td>4.03</td>
<td>22</td>
<td>2.07</td>
<td>2.82</td>
</tr>
<tr>
<td>6</td>
<td>2.45</td>
<td>3.71</td>
<td>23</td>
<td>2.07</td>
<td>2.81</td>
</tr>
<tr>
<td>7</td>
<td>2.36</td>
<td>3.50</td>
<td>24</td>
<td>2.06</td>
<td>2.80</td>
</tr>
<tr>
<td>8</td>
<td>2.31</td>
<td>3.36</td>
<td>25</td>
<td>2.06</td>
<td>2.79</td>
</tr>
<tr>
<td>9</td>
<td>2.26</td>
<td>3.25</td>
<td>26</td>
<td>2.06</td>
<td>2.78</td>
</tr>
<tr>
<td>10</td>
<td>2.23</td>
<td>3.17</td>
<td>27</td>
<td>2.05</td>
<td>2.77</td>
</tr>
<tr>
<td>11</td>
<td>2.20</td>
<td>3.11</td>
<td>28</td>
<td>2.05</td>
<td>2.76</td>
</tr>
<tr>
<td>12</td>
<td>2.18</td>
<td>3.06</td>
<td>29</td>
<td>2.04</td>
<td>2.76</td>
</tr>
<tr>
<td>13</td>
<td>2.16</td>
<td>3.01</td>
<td>30</td>
<td>2.04</td>
<td>2.75</td>
</tr>
<tr>
<td>14</td>
<td>2.14</td>
<td>2.98</td>
<td>40</td>
<td>2.02</td>
<td>2.70</td>
</tr>
<tr>
<td>15</td>
<td>2.13</td>
<td>2.95</td>
<td>60</td>
<td>2.00</td>
<td>2.66</td>
</tr>
<tr>
<td>16</td>
<td>2.12</td>
<td>2.92</td>
<td>120</td>
<td>1.98</td>
<td>2.62</td>
</tr>
<tr>
<td>17</td>
<td>2.11</td>
<td>2.90</td>
<td>Infinity</td>
<td>1.96</td>
<td>2.58</td>
</tr>
</tbody>
</table>

*This table is adapted from Table 12 in *Biometrika Tables for Statisticians*, vol. 1 (3d ed.), New York: Cambridge University Press, 1970, edited by E. S. Pearson and H. O. Hartley, by permission of the *Biometrika* Trustees.

Formula for calculating the value of t for independent groups:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{s_{\bar{X}_1 - \bar{X}_2}}$$

where

$$s_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}$$

and

- \bar{X}_1 = mean of Group 1
- \bar{X}_2 = mean of Group 2
- n_1 = sample size of Group 1
- n_2 = sample size of Group 2
- s_1^2 = variance of Group 1
- s_2^2 = variance of Group 2
- $N = n_1 + n_2$
440

TABLE A.3

CRITICAL VALUES OF THE F-DISTRIBUTION*

Instructions for use: To find the critical value of F, locate the cell in the table formed by the intersection of the row containing the degrees of freedom associated with the denominator of the F-ratio and the column containing the degrees of freedom associated with the numerator of the F-ratio. The numbers listed
in boldface type are the critical values of F at  5 .05; the numbers listed in Roman type are the critical values of F at  5 .01. As an example, suppose we
have adopted the 5% level of significance and wish to evaluate the significance of an F with dfnum 5 2 and dfdenom 5 12. From the table we find that the critical value of F(2, 12) 5 3.89 at  5 .05. If the obtained value of F equals or exceeds this critical value, we will reject the null hypothesis; if the obtained value
of F is smaller than this critical value, we will not reject the null hypothesis.

Degrees of Freedom for Denominator

Degrees of Freedom for Numerator
1

2

3

4

5

6

7

8

9

10

12

15

20

24

30

40

60

Inﬁnity

1

161
4052

200
4999

216
5403

225
5625

230
5764

234
5859

237
5928

239
5981

241
6022

242
6056

244
6106

246
6157

248
6209

249
6325

250
6261

251
6287

252
6313

254
6366

2

18.5
98.5

19.0
99.0

19.2
99.2

19.2
99.2

19.3
99.3

19.3
99.3

19.4
99.4

19.4
99.4

19.4
99.4

19.4
99.4

19.4
99.4

19.4
99.4

19.4
99.4

19.4
99.5

19.5
99.5

19.5
99.5

19.5
99.5

19.5
99.5

3

10.1
34.1

9.55
30.8

9.28
29.5

9.12
28.7

9.01
28.2

8.94
27.9

8.89
27.7

8.85
27.5

8.81
27.4

8.79
27.2

8.74
27.0

8.70
26.9

8.66
26.7

8.64
26.6

8.62
26.5

8.59
26.4

8.57
26.3

8.53
26.1

4

7.71
21.2

6.94
18.0

6.59
16.7

6.39
16.0

6.26
15.5

6.16
15.2

6.09
15.0

6.04
14.8

6.00
14.7

5.96
14.6

5.91
14.4

5.86
14.2

5.80
14.0

5.77
13.9

5.75
13.8

5.72
13.8

5.69
13.6

5.63
13.5

5

6.61
16.3

5.79
13.3

5.41
12.1

5.19
11.4

5.05
11.0

4.95
10.7

4.88
10.5

4.82
10.3

4.77
10.2

4.74
10.0

4.68
9.89

4.62
9.72

4.56
9.55

4.53
9.47

4.50
9.38

4.46
9.29

4.43
9.20

4.26
9.02

6

5.99
13.8

5.14
10.9

4.76
9.78

4.53
9.15

4.39
8.75

4.28
8.47

4.21
8.26

4.15
8.10

4.10
7.98

4.06
7.87

4.00
7.72

3.94
7.56

3.87
7.40

3.84
7.31

3.81
7.23

3.77
7.14

3.74
7.06

3.67
6.88

7

5.59
12.2

4.74
9.55

4.35
8.45

4.12
7.85

3.97
7.46

3.87
7.19

3.79
6.99

3.73
6.84

3.68
6.72

3.64
6.62

3.57
6.47

3.51
6.31

3.44
6.16

3.41
6.07

3.38
5.99

3.34
5.91

3.30
5.82

3.23
5.65

8

5.32
11.3

4.46
8.65

4.07
7.59

3.84
7.01

3.69
6.63

3.58
6.37

3.50
6.18

3.44
6.03

3.39
5.91

3.35
5.81

3.28
5.67

3.22
5.52

3.15
5.36

3.12
5.28

3.08
5.20

3.04
5.12

3.01
5.03

2.93
4.86

9

5.12
10.6

4.26
8.02

3.86
6.99

3.63
6.42

3.48
6.06

3.37
5.80

3.29
5.61

3.23
5.47

3.18
5.35

3.14
5.26

3.07
5.11

3.01
4.96

2.94
4.81

2.90
4.73

2.86
4.65

2.83
4.57

2.79
4.48

2.71
4.31

10

4.96
10.0

4.10
7.56

3.71
6.55

3.48
5.99

3.33
5.64

3.22
5.39

3.14
5.20

3.07
5.06

3.02
4.94

2.98
4.85

2.91
4.71

2.85
4.56

2.77
4.41

2.74
4.33

2.70
4.25

2.66
4.17

2.62
4.08

2.54
3.91

11

4.84
9.65

3.98
7.21

3.59
6.22

3.36
5.67

3.20
5.32

3.09
5.07

3.01
4.89

2.95
4.74

2.90
4.63

2.85
4.54

2.79
4.40

2.72
4.25

2.65
4.10

2.61
4.02

2.57
3.94

2.53
3.86

2.49
3.78

2.40
3.60

12

4.75
9.33

3.89
6.93

3.49
5.95

3.26
5.41

3.11
5.06

3.00
4.82

2.91
4.64

2.85
4.50

2.80
4.39

2.75
4.30

2.69
4.16

2.62
4.01

2.54
3.86

2.51
3.78

2.47
3.70

2.43
3.62

2.38
3.54

2.30
3.36

13

4.67
9.07

3.81
6.70

3.41
5.74

3.18
5.21

3.03
4.86

2.92
4.62

2.83
4.44

2.77
4.30

2.71
4.19

2.67
4.10

2.60
3.96

2.53
3.82

2.46
3.66

2.42
3.59

2.38
3.51

2.34
3.43

2.30
3.34

2.21
3.17


14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.84
21	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.78
22	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.73
23	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.69
24	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.65
25	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.62
26	4.14	3.30	2.90	2.67	2.51	2.40	2.32	2.26	2.20	2.15	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64
27	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.51
28	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.7	1.65	1.59	1.53	1.39
29	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.25
30	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.00

This table is abridged from Table 18 in *Biometrika Tables for Statisticians*, vol. 1 (3d ed.), New York: Cambridge University Press, 1970, edited by E. S. Pearson and H. O. Hartley, by permission of the *Biometrika* Trustees.
Glossary

ABAB design (reversal design) A single-case experimental design in which an initial baseline stage (A) is followed by a treatment stage (B), a return to baseline (A), and then another treatment stage (B); the researcher observes whether behavior changes on introduction of the treatment, reverses when the treatment is withdrawn, and improves again when the treatment is reintroduced.

alpha See level of significance.

ANOVA The analysis of variance, or ANOVA, is the most commonly used inferential test for examining a null hypothesis when comparing more than two means in a single-factor study, or in studies with more than one factor (i.e., independent variable). The ANOVA test is based on analyzing different sources of variation in an experiment.

applied research Research that seeks knowledge that will improve a situation. See also basic research.

archival records Source of evidence based on records or documents relating the activities of individuals, institutions, governments, and other groups; used as an alternative to or in conjunction with other research methods.

attrition See subject attrition.

baseline stage First stage of a single-case experiment in which a record is made of the individual’s behavior prior to any intervention.

basic research Research that seeks knowledge to increase understanding of behavior and mental processes and to test theories. See also applied research.

block randomization The most common technique for carrying out random assignment in the random groups design; each block includes a random order of the conditions, and there are as many blocks as there are subjects in each condition of the experiment.

case study An intensive description and analysis of a single individual.

causal inference Identification of the cause or causes of a phenomenon, by establishing covariation of cause and effect, a time-order relationship with cause preceding effect, and the elimination of plausible alternative causes.

ceiling (and floor) effect Measurement problem whereby the researcher cannot measure the effects of an independent variable or a possible interaction effect because performance has reached a maximum (minimum) in any condition of the experiment.

central tendency See measures of central tendency.

coding The initial step in data reduction, especially with narrative records, in which units of behavior or particular events are identified and classified according to specific criteria.

Cohen’s d A frequently used measure of effect size in which the difference in means for two conditions is divided by the average variability of participants’ scores (within-group standard deviation). Based on Cohen’s guidelines, d values of .20, .50, and .80 represent small, medium, and large effects, respectively, of an independent variable.

Cohen’s f A measure of effect size when there are more than two means that defines an effect relative to the degree of dispersal among group means. Based on Cohen’s guidelines, an f value of .10, .25, and .40 defines a small, medium, and large effect size, respectively.
comparison of two means A statistical technique that can be applied (usually after obtaining a statistically significant omnibus F-test) to locate the specific source of systematic variation in an experiment by comparing means two at a time.

complex design Experiment in which two or more independent variables are studied simultaneously.

confidence interval Indicates the range of values which we can expect to contain a population value with a specified degree of confidence (e.g., 95%).

confidence interval for a population parameter A range of values around a sample statistic (e.g., sample mean) with specified probability (e.g., .95) that the population parameter (e.g., population mean) has been captured within that interval.

confirming what the data reveal In the third stage of data analysis the researcher determines what the data tell us about behavior. Statistical techniques are used to counter arguments that the results are simply “due to chance.”

confounding Occurs when the independent variable of interest systematically covaries with a second, unintended independent variable.

construct A concept or idea used in psychological theories to explain behavior or mental processes; examples include aggression, depression, intelligence, memory, and personality.

contamination Occurs when there is communication of information about the experiment between groups of participants.

content analysis Any of a variety of techniques for making inferences by objectively identifying specific characteristics of messages, usually written communications but may be any form of message; used extensively in the analysis of archival data.

control Key component of the scientific method whereby the effects of various factors possibly responsible for a phenomenon are isolated; three basic types of control are manipulation, holding conditions constant, and balancing.

correlation Exists when two different measures of the same people, events, or things vary together; the presence of a correlation makes it possible to predict values on one variable by knowing the values on the second variable.

correlation coefficient Statistic indicating how well two measures vary together; absolute size ranges from 0.0 (no correlation) to 1.00 (perfect correlation); direction of covariation is indicated by the sign of the coefficient, a plus (+) indicating that both measures covary in the same direction and a minus (−) indicating that the variables vary in opposite directions.

correlational research Research to identify predictive relationships among naturally occurring variables.

counterbalancing A control technique for distributing (balancing) practice effects across the conditions of a repeated measures design. How counterbalancing is accomplished depends on whether a complete or an incomplete repeated measures design is used.

cross-sectional design Survey research design in which one or more samples of the population are selected and information is collected from the samples at one time.

data reduction Process in the analysis of behavioral data whereby results are meaningfully organized and statements summarizing important findings are prepared.

debriefing Process following a research session through which participants are informed about the rationale for the research in which they participated, about the need for any deception, and about their specific contribution to the research. Important goals of debriefing are to clear up any misconceptions and to leave participants with a positive feeling toward psychological research.

deception Intentionally withholding information from a participant about significant aspects of a research project or presenting misinformation about the research to participants.
demand characteristics Cues and other information used by participants to guide their behavior in a psychological study, often leading participants to do what they believe the observer (experimenter) expects them to do.

dependent variable Measure of behavior used by the researcher to assess the effect (if any) of the independent variable.

differential transfer Potential problem in repeated measures designs when performance in one condition differs depending on the condition preceding it.

double-blind procedure Both the participant and the observer are kept unaware (blind) of what treatment is being administered.

effect size Index of the strength of the relationship between the independent variable and dependent variable that is independent of sample size.

empirical approach Approach to acquiring knowledge that emphasizes direct observation and experimentation as a way of answering questions.

estimated standard error of the mean An estimate of the true standard error obtained by dividing the sample standard deviation by the square root of the sample size.

eta squared (η^2) A measure of the strength of association (or effect size) based on the proportion of variance accounted for by the effect of the independent variable on the dependent variable.

ethnocentric bias An attempt to understand the behavior of individuals in different cultures based on the perspectives and experiences in one’s own culture.

experiment A controlled research situation in which scientists manipulate one or more factors and observe the effects of this manipulation on behavior.

experimenter expectancy effects Experimenters’ expectations that may lead them to treat subjects differently in different groups or to record data in a biased manner.

external validity The extent to which the results of a research study can be generalized to different populations, settings, and conditions.

factorial design See complex design.

field experiment Procedure in which one or more independent variables is manipulated by an observer in a natural setting to determine the effect on behavior.

floor effect See ceiling effect.

F-test In the analysis of variance, or ANOVA, the ratio of between-group variation and within-group or error variation.

getting to know the data In this first stage of data analysis the researcher inspects the data for errors and outliers and becomes familiar with the general features of the data.

Hawthorne effect See novelty effects.

history The occurrence of an event other than the treatment that can threaten internal validity if it produces changes in the research participants’ behavior.

hypothesis A tentative explanation for a phenomenon.

idiographic approach Intensive study of an individual, with an emphasis on both individual uniqueness and lawfulness.

independent groups design Each separate group of subjects in the experiment represents a different condition as defined by the level of the independent variable.

independent variable Factor for which the researcher manipulates at least two levels in order to determine its effect on behavior.

individual differences variable A characteristic or trait that varies consistently across individuals, such as level of depression, age, intelligence, gender. Because this variable is formed from preexisting groups (i.e., it occurs “naturally”), an individual differences variable is sometimes called a natural groups variable. Another term sometimes used synonymously with individual differences variable is subject variable.
informed consent Explicitly expressed willingness to participate in a research project based on clear understanding of the nature of the research, of the consequences of not participating, and of all factors that might be expected to influence willingness to participate.

instrumentation Changes over time can take place not only in the participants of an experiment, but also in the instruments used to measure the participants’ performance. These changes due to instrumentation can threaten internal validity if they cannot be separated from the effect of the treatment.

interaction effect When the effect of one independent variable differs depending on the level of a second independent variable.

internal validity Degree to which differences in performance can be attributed unambiguously to an effect of an independent variable, as opposed to an effect of some other (uncontrolled) variable; an internally valid study is free of confounds.

interobserver reliability Degree to which two independent observers are in agreement.

interrupted time-series design See simple interrupted time-series design and time series with nonequivalent control group design.

interviewer bias Occurs when the interviewer tries to adjust the wording of a question to fit the respondent or records only selected portions of the respondent’s answers.

level of significance The probability when testing the null hypothesis that is used to indicate whether an outcome is statistically significant. Level of significance, or alpha, is equal to the probability of a Type I error.

linear trend A trend in the data that is appropriately summarized by a straight line.

longitudinal design Research design in which the same sample of respondents is interviewed (surveyed) more than once.

main effect Overall effect of an independent variable in a complex design.

matched groups design Type of independent groups design in which the researcher forms comparable groups by matching subjects using a matching variable and then randomly assigns the members of these matched sets of subjects to the conditions of the experiment.

maturation Change associated with the passage of time *per se* is called maturation. Changes participants undergo in an experiment that are due to maturation and not due to the treatment can threaten internal validity.

mean The arithmetic mean, or average, is determined by dividing the sum of the scores by the number of scores contributing to that sum. The mean is the most commonly used measure of central tendency.

measurement scale One of four levels of physical and psychological measurement: nominal (categorizing), ordinal (ranking), interval (specifying distance between stimuli), and ratio (having an absolute zero point).

measures of central tendency Measures such as the mean, median, and mode that identify a score that the data tend to center around.

measures of dispersion (variability) Measures such as the range and standard deviation that describe the degree of dispersion of numbers in a distribution.

mechanical subject loss Occurs when a subject fails to complete the experiment because of equipment failure or because of experimenter error.

median The middle point in a distribution, above which half the scores fall and below which half fall.

meta-analysis Analysis of results of several (often, very many) independent experiments investigating the same research area; the measure used in a meta-analysis is typically effect size.

minimal risk A research participant is said to experience minimal risk when probability and magnitude of harm or discomfort anticipated in the research is not greater
than that ordinarily encountered in daily life or during the performance of routine tests.

mode The score that appears most frequently in the distribution.

multimethod approach Approach to hypothesis testing that seeks evidence by collecting data using several different research procedures and measures of behavior; a recognition of the fact that any single observation of behavior is susceptible to error in the measuring process.

multiple-baseline design (across individuals, across behaviors, across situations) A single-case experimental design in which the effect of a treatment is demonstrated by showing that behaviors in more than one baseline change as a consequence of the introduction of a treatment; multiple baselines are established for different individuals, for different behaviors in the same individual, or for the same individual in different situations.

N = 1 designs See single-case experiment.

narrative record Record intended to provide a more or less faithful reproduction of behavior as it originally occurred.

natural groups design Type of independent groups design in which the conditions represent the selected levels of a naturally occurring independent variable, for example, the individual differences variable age.

naturalistic observation Observation of behavior in a more or less natural setting without any attempt by the observer to intervene.

negative correlation A relationship between two variables in which values for one measure increase as the values of the other measure decrease.

nomothetic approach Approach to research that seeks to establish broad generalizations or laws that apply to large groups (populations) of individuals; the average or typical performance of a group is emphasized.

nonequivalent control group design Quasi-experimental procedure in which a comparison is made between control and treatment groups that have been established on some basis other than through random assignment of participants to groups.

nonprobability sampling A sampling procedure in which there is no way to estimate the probability of each element’s being included in the sample; a common type is convenience sampling.

novelty effects Threats to internal validity of a study that occur when people’s behavior changes simply because an innovation (e.g., a treatment) produces excitement, energy, and enthusiasm; a Hawthorne effect is a special case of novelty effects.

null hypothesis (H₀) Assumption used as the first step in statistical inference whereby the independent variable is said to have had no effect.

null hypothesis significance testing (NHST) A procedure for statistical inference used to decide whether a variable has produced an effect in a study. NHST begins with the assumption that the variable has no effect (see null hypothesis), and probability theory is used to determine the probability that the effect (e.g., a mean difference between conditions) observed in a study would occur simply by error variation (“chance”). If the likelihood of the observed effect is small (see level of significance), assuming the null hypothesis is true, we infer the variable produced a reliable effect (see statistically significant).

observer bias Systematic errors in observation often resulting from the observer’s expectancies regarding the outcome of a study (i.e., expectancy effects).

omnibus F-test The initial overall analysis based on ANOVA.

operational definition Procedure whereby a concept is defined solely in terms of the observable procedures used to produce and measure it.
participant observation Observation of behavior by someone who also has an active and significant role in the situation or context in which behavior is recorded.

physical traces Source of evidence that is based on the remnants, fragments, and products of past behavior; used as an alternative to or in conjunction with other research methods.

placebo control group Procedure by which a substance that resembles a drug or other active substance but that is actually an inert, or inactive, substance is given to participants.

plagiarism Presentation of another’s ideas or work without clearly identifying the source.

population Set of all the cases of interest.

positive correlation A relationship between two variables in which values for one measure increase as the values of the other measure also increase.

power Probability in a statistical test that a false null hypothesis will be rejected; power is related to the level of significance selected, the size of the treatment effect, and the sample size.

practice effects Changes that participants undergo with repeated testing. Practice effects are the summation of both positive (e.g., familiarity with a task) and negative (e.g., boredom) factors associated with repeated measurement.

privacy Right of individuals to decide how information about them is to be communicated to others.

probability sampling Sampling procedure in which the probability that each element of the population will be included in the sample can be specified.

program evaluation Research that seeks to determine whether a change proposed by an institution, government agency, or other unit of society is needed and likely to have an effect as planned, and, when implemented, to have the desired effect at a reasonable cost.

quasi-experiments Procedures that resemble characteristics of true experiments, for example, that some type of intervention or treatment is used and a comparison is provided, but are lacking in the degree of control that is found in true experiments.

questionnaire A set of predetermined questions for all respondents that serves as the primary research instrument in survey research.

random assignment Most common technique for forming groups as part of an independent groups design; the goal is to establish equivalent groups by balancing individual differences.

random groups design Most common type of independent groups design in which subjects are randomly assigned to each group such that groups are considered comparable at the start of the experiment.

random sampling See simple random sampling.

range The difference between the highest and lowest numbers in a distribution.

reactivity Influence that an observer has on the behavior under observation; behavior influenced by an observer may not be representative of behavior that occurs when an observer is not present.

regression (to the mean) Statistical regression toward the mean can occur when individuals have been selected to participate in an experiment because of their “extreme” scores. Statistical regression is a threat to internal validity because individuals selected from extreme groups would be expected to have less extreme scores on a second test (the “posttest”) without any treatment simply due to statistical regression.

relevant independent variable Independent variable that has been shown to influence behavior, either directly, by producing a main effect, or indirectly, by resulting in an interaction effect in combination with a second independent variable.
reliability A measurement is reliable when it is consistent.

repeated measures designs Research designs in which each subject participates in all
conditions of the experiment (i.e., measurement is repeated on the same subject).

repeated measures (within-subjects) t-test An inferential test for comparing two
means from the same group of subjects or from two groups of subjects “matched” on
some measure related to the dependent variable.

replication Repeating the exact procedures used in an experiment to determine
whether the same results are obtained.

representativeness A sample is representative to the extent that it has the same distri-
bution of characteristics as the population from which it was selected; our ability to
generalize from sample to population is critically dependent on representativeness.

response rate bias Threat to the representativeness of a sample that occurs when some
participants selected to respond to a survey systematically fail to complete the survey
(e.g., due to failure to complete a lengthy questionnaire or to comply with a request
to participate in a phone survey).

reversal design See ABAB design.

risk/benefit ratio Subjective evaluation of the risk to a research participant relative to
the benefit both to the individual and to society of the results of the proposed research.

sample Something less than all the cases of interest; in survey research, a subset of the
population actually drawn from the sampling frame.

scatterplot A graph showing the relationship between two variables by indicating the
intersection of two measures obtained from the same person, thing, or event.

scientific method Approach to knowledge that emphasizes empirical rather than
intuitive processes, testable hypotheses, systematic and controlled observation of
operationally defined phenomena, data collection using accurate and precise instru-
mentation, valid and reliable measures, and objective reporting of results; scientists
tend to be critical and, most important, skeptical.

selection Selection is a threat to internal validity when, from the outset of a study,
differences exist between the kinds of individuals in one group and those in another
group in the experiment.

selection bias Threat to the representativeness of a sample that occurs when the pro-
cedures used to select a sample result in the over- or underrepresentation of a signifi-
cant segment of the population.

selective deposit Bias that results from the way physical traces are laid down and the
way archival sources are produced, edited, or altered, as they are established; when
present, the bias severely limits generality of research findings.

selective subject loss Occurs when subjects are lost differentially across the conditions
of the experiment as the result of some characteristic of each subject that is related to
the outcome of the study.

selective survival Bias that results from the way physical traces and archives survive
over time; when present, the bias severely limits the external validity of research
findings.

sensitivity Refers to the likelihood in an experiment that the effect of an independent
variable will be detected when that variable does, indeed, have an effect; sensitivity
is increased to the extent that error variation is reduced (e.g., by holding variables
constant rather than balancing them).

simple interrupted time-series design Quasi-experimental procedure in which
changes in a dependent variable are observed for some period of time both before
and after a treatment is introduced.

simple main effect Effect of one independent variable at one level of a second inde-
pendent variable in a complex design.
simple random sampling (random selection) Type of probability sampling in which each possible sample of a specified size in the population has an equal chance of being selected.

single-factor independent groups design An experiment that involves independent groups with one independent variable.

single-case experiment A procedure that focuses on behavior change in one individual by systematically contrasting conditions within that individual while continuously monitoring behavior.

situation sampling Random or systematic selection of situations in which observations are made with the goal of representativeness across circumstances, locations, and conditions.

small-n research See single-case experiment.

social desirability Pressures on survey respondents to answer as they think they should respond in accordance with what is most socially acceptable, and not in accordance with what they actually believe.

spurious relationship What exists when evidence falsely indicates that two or more variables are associated.

stages of data analysis Three stages of data analysis are getting to know the data, summarizing the data, and confirming what the data reveal.

standard deviation The most commonly used measure of dispersion that indicates approximately how far on the average scores differ from the mean.

standard error of the mean The standard deviation of the sampling distribution of means.

statistically significant When the probability of an obtained difference in an experiment is smaller than would be expected if error variation alone were assumed to be responsible for the difference, the difference is statistically significant.

stem-and-leaf display A technique for visualizing both the general features of a data set and specific item information by creating leading digits as “stems” and trailing digits as “leaves.”

stratified random sampling Type of probability sampling in which the population is divided into subpopulations called strata and random samples are drawn from each of these strata.

structured observation Variety of observational methods using intervention in which the degree of control is often less than in field experiments; frequently used by clinical and developmental psychologists when making behavioral assessments.

subject attrition A threat to internal validity occurs when participants are lost from an experiment, for example, when participants drop out of the research project. The loss of participants changes the nature of a group from that established prior to the introduction of the treatment—for example, by destroying the equivalence of groups that had been established through random assignment.

successive independent samples design Survey research design in which a series of cross-sectional surveys is done and the same questions are asked of each succeeding sample of respondents.

summarizing the data In this second stage of data analysis the researcher uses descriptive statistics and graphical displays to summarize the information in a data set. Trends and patterns in the data set are described.

testing Taking a test generally has an effect on subsequent testing. Testing can threaten internal validity if the effect of a treatment cannot be separated from the effect of testing.

theory Logically organized set of propositions that serves to define events, describe relationships among events, and explain the occurrence of these events; scientific theories guide research and organize empirical knowledge.
threats to internal validity Possible causes of a phenomenon that must be controlled so a clear cause-effect inference can be made.

time sampling Selection of observation intervals either systematically or randomly with the goal of obtaining a representative sample of behavior.

time series with nonequivalent control group design (See also simple interrupted time-series design.) Quasi-experimental procedure that improves on the validity of a simple time-series design by including a nonequivalent control group; both treatment and comparison groups are observed for a period of time both before and after the treatment.

t-test for independent groups An inferential test for comparing two means from different groups of subjects.

Type I error The probability of rejecting the null hypothesis when it is true, equal to the level of significance, or alpha.

Type II error The probability of failing to reject the null hypothesis when it is false.

unobtrusive (nonreactive) measures Measures of behavior that eliminate the problem of reactivity because observations are made in such a way that the presence of the observer is not detected by those being observed.

validity The “truthfulness” of a measure; a valid measure is one that measures what it claims to measure.

variability See measures of dispersion.
References

Klein, E. (2013a, April 28). If this were a pill, you’d do anything to get it. *The Washington Post, G1, G6–G7.*

Loftus, G. R. (1996). Psychology will be a much better science when we change the way we analyze data. *Current Directions in Psychological Science, 5,* 161–171.

Chapter 1

Figure 1.1a: © Imagery Majestic/Cutcaster RF; Figure 1.1b: © Bananastock RF; Box 1.1: © Courtesy of Princeton University; Figure 1.2a: © Kim Steele/Getty Images RF; Figures 1.2b and 1.2c: © Corbis RF.

Chapter 2

Figure 2.1 (top & bottom): Courtesy of Thomas A. Sebeok, Distinguished Professor Emeritus, Indiana University, Bloomington; Box 2.1: © J. S. Zechmeister; Figure 2.2: © Paul Bradbury/Getty Images RF; Figure 2.3 (left): © The Museum of Questionable Medical Devices, www.museumofquackery.com; Figure 2.3 (right): © Corbis RF; Figure 2.4: © David Buffington/Getty Images RF; Figure 2.5: Data adapted with permission of author from Table 2, p. 551 in Levine, R. V., Norenzayan, A., & Philbrick, K. Cross-cultural differences in helping strangers. Journal of Cross-Cultural Psychology, 32, 543–560. Copyright © 2001 Sage Publications, Inc.

Chapter 3

Figure 3.1 (left): © Dynamic Graphics/JupiterImages RF; Figure 3.1 (right) © E. B. Zechmeister with special thanks to Linda & Hilary Bryant, Candy Bauilat and Peter Berquist; Figure 3.2 (left & right): © E. B. Zechmeister (left) and © J. J. Shaughnessy (right) We wish to acknowledge the cooperation of the Parmly Institute of Loyola University of Chicago, Bill Shofner, and Rich Bowen for providing experimental settings for some of the photos in this chapter; Figure 3.3: © Greg Gibson/AP Photo/Wide World Photos; Figure 3.4: © Digital Vision RF; Figure 3.5: Photo of Eugene and Jeanne Zechmeister by a friendly passerby; Figure 3.6: Copyright © 1968 by Stanley Milgram, copyright renewed 1993 by Alexandra Milgram. From the film Obedience distributed by Pennsylvania State Media Sales.

Chapter 4

Figure 4.2: © Brand X/Getty Images RF; Figure 4.3: © Ira E. Hyman, Jr., Western Washington University; Figure 4.4: © Brand X Pictures/Punchstock RF; Table 4.3: Scale provided by Jane Dickie, Psychology Department, Hope College, Holland, MI; Table 4.4: From data provided by Nairán Ramírez-Esparza and data found on p. 5 in Ramírez-Esparza, N., Mehl, M. R., Álvarez-Bermúdez, J., & Pennebaker, J. W. Are Mexicans more or less sociable than Americans? Insights from a naturalistic study. Journal of Research in Personality, 43, 1–7. Copyright © 2009 Elsevier; Figure 4.5: © Jim Sugar/Corbis.

Chapter 5

Figure 5.2: © Bananastock RF; Figure 5.3: From Figure 7, p. 7 in Sax, L. J., Austin, A. W., Lindholm, J. A., Korn, W. S., Saenz, V. B., & Mahoney, K. M. (2003).
Chapter 6
Figure 6.1: © Indiapicture/Alamy Images; Figure 6.2: Henny Ray Abrams/AFP/Getty Images; Figure 6.3: © Corbis RF; Table 6.1: Adapted with permission of publisher from Table 2, p. 885 in Carnagey, N. L., & Anderson, C. A. The effects of reward and punishment in violent video games on aggressive affect, cognition, and behavior. Psychological Science, 16, 882–889. Copyright © 2005 Association for Psychological Science; Figure 6.4: © Brand X Pictures RF; Figure 6.5: © Photodisc/Getty Images RF.

Chapter 7
Figure 7.1: © Ryan McVay/Getty Images RF; Figures 7.2a and 7.2b: © Image Source/Getty Images RF; Figure 7.3: © Comstock/PunchStock RF.

Chapter 8
Table 8.3: Data provided by Saul M. Kassin.; Figure 8.1: Adapted from Figure 2, p. 198 in Kassin, S. M., Goldstein, C. C., & Savitsky, K. Behavioral confirmation in the interrogation room: On the dangers of presuming guilt. Law and Human Behavior, 27, 187–203. Copyright © 2003 American Psychology-Law Society/Division 41 of the American Psychological Association. Data provided by Saul M. Kassin.; Figure 8.5: Adapted from Table 2, p. 913 in Pingitore, R., Dugoni, B. L., Tindale, R. S., & Spring, B. Bias against overweight job applicants in a simulated employment interview. Journal of Applied Psychology, 79, 909–917. Copyright © 1994 American Psychological Association.; Tables 8.5 and 8.6 and Figure 8.6: Adapted from data provided courtesy of C. R. Kaiser and presented on p. 336 in Kaiser, C. R., Vick, S. B., & Major, B. Prejudice expectations moderate preconscious attention to cues that are threatening to social identity. Psychological Science, 17, 332–338. Copyright © 2006 Association for Psychological Science.

Chapter 9
Figure 9.1 (left and right): © Stacy M. Lopresti-Goodman, Department of Psychology, Marymount University, Arlington, VA; Box 9.2: Case study illustration © 1978 Division of Psychotherapy (29), American Psychological Association, adapted with permission of publisher and author. The official citation that should be used in referencing this material is Kirsch, I. (1978). Teaching clients to be their own therapists: A case study illustration. Psychotherapy: Theory, Research and Practice, 15, 302–305. The use of this information does not imply endorsement by the publisher.; Figure 9.2: © LWA-Dann Tardif/Corbis; Figure 9.3: Adapted with permission of publisher and author from Figure 1, p. 60
in Horton, S. V. Reduction of disruptive mealtime behavior by facial screening. *Behavior Modification, 11*, 53–64. Copyright © 1987 Sage Publications, Inc.; Figure 9.4: Figure adapted with permission of author from Figure 1, p. 627 in Lang, R., Regester, A., Mulloy, A., Rispoli, M., & Botout, A. Behavioral intervention to treat selective mutism across multiple social situations and community settings. *Journal of Applied Behavioral Analysis, 44*, 623–628. Copyright © 2011 Society for the Experimental Analysis of Behavior.

Chapter 10

Figure 10.1: © Children’s Television Workshop/Hulton Archive/Getty Images; Figure 10.2: © Mikael Karlsson/Arresting Images RF; Figure 10.3: © Ryan McVay/Getty Images RF; Figure 10.5: Adapted from Figure 1, p. 383 in Peterson, C., & Seligman, M. E. P. Character strengths before and after September 11. *Psychological Science, 14*, 381–384. Copyright © 2003 Association for Psychological Science; Figures 10.6 and 10.7: Adapted from data in Figures 1 and 3, p. 5 in Khuder, S. A., Milz, S., Jordan, T., Price, J., Silvestri, K., & Butler, P. The impact of a smoking ban on hospital admissions for coronary heart disease. *Preventive Medicine, 45*, 3–8. Copyright © 2007 Elsevier.; Figure 10.8: Based on Figure 2, p. 444 in Salomon, G. Basic and applied research in psychology: Reciprocity between two worlds. *International Journal of Psychology, 22*, 441–446. Copyright © 1987 International Union of Psychological Science and Psychology Press.

Chapter 11

Figures 11.2a and 11.2b: Photos by © Alma Gottlieb from Figure 2 of J. S. DeLoache, et al., 1998, “Grasping the Nature of Pictures,” in Psychological Science, 9, 205–210; Figures 11.3 and 11.4: Based on data provided by Judy DeLoache and adapted with permission of publisher an author from Figure 3 in DeLoache, J. S., Pierroutsakos, S. L., Uttal, D. H., Rosengren, K. S., & Gottlieb, A. Grasping at the nature of pictures. *Psychological Science, 9*, 205–210. Copyright © 1998 Association for Psychological Science.

Chapter 13

Adler, T., 13
Ajarova, L., 279
Akugizibwe, T., 279
Albarracin, D., 29
Allen, H. L., 308
Allport, G. W., 43, 284, 303
Almeroth, K., 57
Álvarez-Bermúdez, J., 122, 168
Ambady, N., 38, 45
American Psychiatric Association, 40–42
American Psychological Association (APA), 9, 11, 13–14, 23, 59, 85, 382, 418
Anand, V., 371
Ancell, M., 108
Anderson, C. A., 4, 196–199, 208
Anderson, C. R., 66
Anderson, J. R., 50
Anderson, K. J., 269
Anglin, J. M., 346
Aristotle, 6
Arkowitz, H., 17
Armeli, S., 118
Armstrong-Stasson, M., 66
Arnett, J. J., 11
Association for Psychological Science (APS), 9, 11, 15, 59, 149, 418
Astin, A. W., 152–153
Astone, N. M., 159
Atkinson, R. C., 283
Atwater, J. D., 334–335
Back, M. D., 66, 112
Baer, D. M., 299
Baicker, K., 308
Baker, T. B., 15, 118
Baldwin, A. K., 147
Banaji, M. R., 29, 60, 64, 66, 78, 128, 148–150, 208
Bard, K. A., 96
Barlow, D. H., 286, 294, 297
Barnett, D., 10
Baron, R. M., 170
Bartholomew, G. A., 418
Bartlett, M. Y., 34
Bass, K. E., 18
Bathje, G. F., 229
Baugh, D., 99
Bauhaus, S., 96
Bauman, C. W., 66
Baumeister, R. F., 20, 93, 168–169
Baumrind, D., 73, 76
Bauserman, R., 10
Baxter, M. G., 154–157
Beeke-Blease, K. A., 64
Begley, S., xi
Behnke, S., 75, 82, 84
Bellack, A. S., 67, 77, 78
Bentham, J., 81
Berdan, J., 153–154
Bergsneider, H. B., 12
Berk, R. A., 334
Berkowitz, L., 4
Berliner, L., 10
Bernstein, M., 308
Bimber, B., 57
Birnbaum, M., 10–11, 148–150
Blake, L. P., 153–154
Blanchard, F. A., 128
Blanck, P. D., 67, 77, 78
Blass, T., 75, 84
Bleich, A., 66
Boekhoven, B., 96
Bolgar, H., 286
Bonanno, G. A., 66
Boring, E. G., 30
Boruch, R. F., 334
Bos, S. M., 103–104, 114–115
Botout, A., 294–295
Bower, G. H., 267–269
Brower, A., 96
Brandt, R. M., 113
Bransbury, A. J., 32
Brechan, I., 29
Brigham, J. C., 128
Britton, B., 77
Broffman, M., 32
Brossart, D. F., 288
Brottsky, S. R., 103
Brown, D. R., 233
Brown, R., 50
Bruckman, A., 60, 64, 66, 69, 78, 128, 148–150
Buchanan, T., 60, 64, 128, 149
Buhrmester, M., 149
Bulger, M., 57
Bullock, J. J., 159
Burger, J. M., xiii, 76, 84, 89
Burr, J. E., 99
Bushman, B. J., 187, 208, 218
Butler, P., 328, 330–331
Caggiano, J. M., 103–104, 114–115
Campbell, J., 57
Candland, D. K., 334
Carey, B., 284
Carnagey, N. L., 196–199
Case, M. H., 153–154
Ceci, S. J., 206
Cepeda-Benito, A., 10
Chabris, C. F., 17, 18, 29
Chaffin, M., 10
Chambers, D. L., 334
Chapman, G. B., 163
Charness, N., 277
Chastain, G., 61
Chernoff, N. N., 8
Chow, S. L., 380, 390
Christensen, L., 73, 76
Chronis, A. M., 346
Chun, D., 57
Chung, J., 334
Church, S. M., 32
Cicchetti, D., 104–105, 113, 130
Clark, C. S., 95, 128
Clark, M. S., 137
Cohen, A. B., 11
Congressional Budget Office, 335
Connor, N., 277
Conway, A. R. A., 51
Cook, W. A., 32
Coon, D. J., 6
Cordaro, L., 130
Cordon, I., 10
Corkin, S., 284
Corrigan, P., 229
Costall, A., 96
Couper, M., 60, 64, 66, 69, 78, 128, 148–150
Craik, K. H., 7
Crandall, C. S., 128
Crandall, R., 59, 70, 128
Creswell, J. W., 119
Crick, N. R., 99
Cronbach, L. J., 421
Crook, M. D., 18
Crossen, C., 137, 144
Crossley, A. M., 169
Crowder, R. G., 208
Cull, W. L., 346
Cullerton-Sen, C., 99
Cumming, G., 360, 365–366, 380
Curtiss, S. R., 100
Dalal, R., 11, 149
Dallam, S. J., 10
D’Anna, C. A., 346
Darley, J. M., 168
Darwin, 7
Dawes, R. M., 206
DeAngelo, L., 152–153
DeLeeuw, K., 57
DeLoache, J. S., 362–366
Descartes, 6
DeSteno, D., 34
Deters, F. G., 95
Dickie, J. R., 115–117
Diener, E., 19, 59, 70, 128, 161–162, 170
Dittmar, H., 25, 182–187
Dixit, J., 103, 128
Dolan, C. A., 117–118
Donnerstein, E., 4, 190
Downs, M. F., 229
Drabick, D. A., 99
Dube, A., 278–279
Dubner, S. J., 111
Duckett, E., 95
Dugoni, B. L., 253–255
Dunlosky, J., 3
Durham, D. L., 279
Durtshi, J., 137
Eagan, K., 153–154
Eagly, A. H., 29
Eastwick, P. W., 3
Ebbinghaus, H., 277
Ebneter, D., 229
Eckenrode, J., 100, 120, 121, 128
Egloof, B., 66, 112
Eibl-Eibesfeldt, I., 98
Eisenberg, D., 229
Ekman, P., 93
Elms, A. C., 75
Eloul, L., 12
Endersby, J. W., 108
Entwisle, D. R., 159
Epley, N., 76
Epstein, S., 161
Ericsson, K. A., 277
Estes, W. K., 359, 366, 380
Evans, A. D., 105
Evans, G. W., 170–171
Evans, R., 190
Eysenbach, G., 100
Fechner, G. T., 277
Feeley, D. M., 80
Ferdowsian, H. R., 279
Fernandez, K. C., 110, 124
Field, A. E., 154–157
Finch, S., 360, 365–366, 380
Fincham, F. D., 137
Fine, M. A., 82, 89
Finkel, E. J., 3
Finkelstein, A. N., 308
Fiore, M. C., 118
Fischler, C., 108, 110
Fisher, C. B., 63
Fleischman, D. A., 277
Foa, R., 137
Fossey, D., 127
Fowler, R. D., 80
Fox, J., 151
Fraley, R. C., 148
Francis, M. E., 21, 180
Freeman, P. R., 237
Freud, S., 40
Freyd, J. J., 64
Frick, R. W., 385
Fryberg, D., 63
Funder, D. C., 20, 93, 168–169
Gabrieli, J. D. E., 277
Gaddis, S., 112
Galileo, 7
Galvani, A. P., 163
Geier, A., 108
Gelkopf, M., 66
Gena, A., 296
Gentile, L., 170–171
Gerrard, M., 334–335
Gigerenzer, G., 25
Giles, D., 103
Gilman, R., 277
Glaser, J., 103, 128
Gleaves, D. H., 10
Glover, P., 96
Golberstein, E., 229
Golden, C. C., 246–251, 264
Gonczy, C., 32
Gonnella, C., 170–171
Gonzales, R., 380, 381
Goodall, J., 80
Goodman, G. S., 10
Gordon, R. T., 32
Gosling, S. D., 7, 11, 93, 107, 110, 112, 148, 149
Gottlieb, A., 362–366
Graham, L. T., 110
Graham, S. M., 137
Green, D. P., 103, 128
Greenfield, P. M., 100, 113, 119
Greenwald, A. G., 8, 40
Griffiths, M. D., 137
Griskevicius, V., 38–39
Grisson, R. J., 354, 361
Grove, J. B., 107, 109–111, 126
Gruber, J. H., 308
Guest, C. M., 32
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park, C. L.</td>
<td>118</td>
</tr>
<tr>
<td>Parker, R. I.</td>
<td>288</td>
</tr>
<tr>
<td>Parnell, P.</td>
<td>98</td>
</tr>
<tr>
<td>Parry, H. J.</td>
<td>169</td>
</tr>
<tr>
<td>Parsons, H. M.</td>
<td>315</td>
</tr>
<tr>
<td>Parker, R. I.</td>
<td>288</td>
</tr>
<tr>
<td>Parnell, P.</td>
<td>98</td>
</tr>
<tr>
<td>Parry, H. J.</td>
<td>169</td>
</tr>
<tr>
<td>Parsons, H. M.</td>
<td>315</td>
</tr>
<tr>
<td>Parsonson, B. S.</td>
<td>299</td>
</tr>
<tr>
<td>Parry, H. J.</td>
<td>169</td>
</tr>
<tr>
<td>Paskett, E. D.</td>
<td>329</td>
</tr>
<tr>
<td>Patuki Blake, L.</td>
<td>152–153</td>
</tr>
<tr>
<td>Paty, J.</td>
<td>118</td>
</tr>
<tr>
<td>Pavlov, I.</td>
<td>8</td>
</tr>
<tr>
<td>Pease, A.</td>
<td>93</td>
</tr>
<tr>
<td>Pease, B.</td>
<td>93</td>
</tr>
<tr>
<td>Pegalis, L.</td>
<td>77</td>
</tr>
<tr>
<td>Pennebaker, J. W.</td>
<td>xiii, 21, 95, 122, 168, 179–180</td>
</tr>
<tr>
<td>Pepler, D. J.</td>
<td>99</td>
</tr>
<tr>
<td>Pete, E.</td>
<td>108, 110</td>
</tr>
<tr>
<td>Peterson, C.</td>
<td>xiv, 34, 137, 327, 329</td>
</tr>
<tr>
<td>Philbrick, K.</td>
<td>42–43, 46</td>
</tr>
<tr>
<td>Piaget, J.</td>
<td>105</td>
</tr>
<tr>
<td>Piasecki, T. M.</td>
<td>118</td>
</tr>
<tr>
<td>Pickren, W. E.</td>
<td>8</td>
</tr>
<tr>
<td>Pierroutsakos, S. L.</td>
<td>362–366</td>
</tr>
<tr>
<td>Pingitore, R.</td>
<td>253–255</td>
</tr>
<tr>
<td>Piper, A. L.</td>
<td>334</td>
</tr>
<tr>
<td>Pollick, A.</td>
<td>62, 64</td>
</tr>
<tr>
<td>Popper, K. R.</td>
<td>50, 53</td>
</tr>
<tr>
<td>Posavac, E. J.</td>
<td>167, 332, 347, 361, 366, 382, 386, 390, 402, 408</td>
</tr>
<tr>
<td>Poulson, C. L.</td>
<td>296</td>
</tr>
<tr>
<td>Poulton, E. C.</td>
<td>237–238</td>
</tr>
<tr>
<td>Powell, K. L.</td>
<td>106</td>
</tr>
<tr>
<td>Powell, T.</td>
<td>96</td>
</tr>
<tr>
<td>Powers, J. L.</td>
<td>100, 120, 121, 128</td>
</tr>
<tr>
<td>Price, J.</td>
<td>xiv, 328, 330–331</td>
</tr>
<tr>
<td>Price, M.</td>
<td>13</td>
</tr>
<tr>
<td>Pryor, J. H.</td>
<td>152–153, 229</td>
</tr>
<tr>
<td>Raju, N. S.</td>
<td>359, 380, 385, 389</td>
</tr>
<tr>
<td>Ralston, P.</td>
<td>99</td>
</tr>
<tr>
<td>Ramirez-Esparza, N.</td>
<td>xiii, 95, 122, 168</td>
</tr>
<tr>
<td>Rasinski, K. A.</td>
<td>147</td>
</tr>
<tr>
<td>Rauscher, F. H.</td>
<td>18</td>
</tr>
<tr>
<td>Rawson, K. A.</td>
<td>3</td>
</tr>
<tr>
<td>Regester, A.</td>
<td>294–295</td>
</tr>
<tr>
<td>Reis, H. T.</td>
<td>3</td>
</tr>
<tr>
<td>Reminger, S. L.</td>
<td>277</td>
</tr>
<tr>
<td>Revele, W.</td>
<td>269</td>
</tr>
</tbody>
</table>

Name Index

476
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richards, M. H.</td>
<td>95</td>
</tr>
<tr>
<td>Richardson, D. R.</td>
<td>77</td>
</tr>
<tr>
<td>Richardson, J.</td>
<td>98</td>
</tr>
<tr>
<td>Riley, D. A.</td>
<td>206</td>
</tr>
<tr>
<td>Rimm, D. C.</td>
<td>286</td>
</tr>
<tr>
<td>Rind, B.</td>
<td>10</td>
</tr>
<tr>
<td>Rispoli, M.</td>
<td>294–295</td>
</tr>
<tr>
<td>Robbins, M. L.</td>
<td>95</td>
</tr>
<tr>
<td>Roberts, G.</td>
<td>106</td>
</tr>
<tr>
<td>Robins, R. W.</td>
<td>7</td>
</tr>
<tr>
<td>Rodebaugh, T. L.</td>
<td>110, 124</td>
</tr>
<tr>
<td>Rodin, J.</td>
<td>xiv, 320–326</td>
</tr>
<tr>
<td>Roethlisberger, F. J.</td>
<td>315</td>
</tr>
<tr>
<td>Rogers, A.</td>
<td>183</td>
</tr>
<tr>
<td>Rogosch, F. A.</td>
<td>104–105, 113, 130</td>
</tr>
<tr>
<td>Rosengren, K. S.</td>
<td>362–366</td>
</tr>
<tr>
<td>Rosenhan, D. L.</td>
<td>101–102, 129</td>
</tr>
<tr>
<td>Rosenthal, R.</td>
<td>45, 63, 130, 194, 355, 361, 388, 398, 410</td>
</tr>
<tr>
<td>Rosnow, R. L.</td>
<td>67, 77, 78, 361, 388, 398, 410</td>
</tr>
<tr>
<td>Rossi, P. H.</td>
<td>334</td>
</tr>
<tr>
<td>Rotheram-Borus, M. J.</td>
<td>67, 77, 78</td>
</tr>
<tr>
<td>Rozin, P.</td>
<td>20, 108, 110</td>
</tr>
<tr>
<td>Rule, N. O.</td>
<td>38</td>
</tr>
<tr>
<td>Russell, T. M.</td>
<td>8</td>
</tr>
<tr>
<td>Sacks, O.</td>
<td>277–278, 283</td>
</tr>
<tr>
<td>Saenz, V. B.</td>
<td>152–153</td>
</tr>
<tr>
<td>Saldaña, J.</td>
<td>120</td>
</tr>
<tr>
<td>Salomon, G.</td>
<td>333–334</td>
</tr>
<tr>
<td>Salpekar, N.</td>
<td>170–171</td>
</tr>
<tr>
<td>Sapirstein, G.</td>
<td>194</td>
</tr>
<tr>
<td>Sargent, J. D.</td>
<td>137</td>
</tr>
<tr>
<td>Sargis, E. G.</td>
<td>11, 60, 74, 76, 128, 149–150</td>
</tr>
<tr>
<td>Savitsky, K.</td>
<td>246–251, 264</td>
</tr>
<tr>
<td>Sax, L. J.</td>
<td>152–153</td>
</tr>
<tr>
<td>Schacter, D. L.</td>
<td>283</td>
</tr>
<tr>
<td>Schatz, C. B.</td>
<td>32</td>
</tr>
<tr>
<td>Schaus, J. F.</td>
<td>308</td>
</tr>
<tr>
<td>Schellenberg, E. G.</td>
<td>18</td>
</tr>
<tr>
<td>Scherr, K. C.</td>
<td>271</td>
</tr>
<tr>
<td>Schlessinger, L.</td>
<td>10</td>
</tr>
<tr>
<td>Schmidt, F. L.</td>
<td>344, 380, 385, 386, 388</td>
</tr>
<tr>
<td>Schmidt, W. C.</td>
<td>149</td>
</tr>
<tr>
<td>Schmukle, S. C.</td>
<td>112</td>
</tr>
<tr>
<td>Schooler, N. R.</td>
<td>67, 77, 78</td>
</tr>
<tr>
<td>Schreibman, L.</td>
<td>296</td>
</tr>
<tr>
<td>Schultz, R. T.</td>
<td>277</td>
</tr>
<tr>
<td>Schwartz, P.</td>
<td>136</td>
</tr>
<tr>
<td>Schwartz, R. D.</td>
<td>107, 109–111, 126</td>
</tr>
<tr>
<td>Schwartz, S. H.</td>
<td>xiii, 46</td>
</tr>
<tr>
<td>Schwarz, N.</td>
<td>147, 206</td>
</tr>
<tr>
<td>Scoville, W. B.</td>
<td>283</td>
</tr>
<tr>
<td>Sechrest, L.</td>
<td>107, 109–111, 126, 385</td>
</tr>
<tr>
<td>Selcuk, E.</td>
<td>xiii, 221</td>
</tr>
<tr>
<td>Seligman, M. E. P.</td>
<td>xiv, 34, 327, 329</td>
</tr>
<tr>
<td>Shadish, W. R.</td>
<td>53, 310, 315–316, 322, 324, 326, 328–329, 385</td>
</tr>
<tr>
<td>Shapiro, K. J.</td>
<td>79</td>
</tr>
<tr>
<td>Shaughnessy, J. J.</td>
<td>41, 51, 83, 209, 238, 267, 319</td>
</tr>
<tr>
<td>Shaw, G. L.</td>
<td>18</td>
</tr>
<tr>
<td>Shelton, B.</td>
<td>329</td>
</tr>
<tr>
<td>Shepperd, J. A.</td>
<td>68</td>
</tr>
<tr>
<td>Sherwood, A.</td>
<td>117–118</td>
</tr>
<tr>
<td>Shields, C.</td>
<td>108, 110</td>
</tr>
<tr>
<td>Shiffman, S.</td>
<td>118</td>
</tr>
<tr>
<td>Shiffrin, R. M.</td>
<td>283</td>
</tr>
<tr>
<td>Shoham, V.</td>
<td>15</td>
</tr>
<tr>
<td>Silberg, J. L.</td>
<td>10</td>
</tr>
<tr>
<td>Silver, N.</td>
<td>29</td>
</tr>
<tr>
<td>Silverman, D.</td>
<td>44, 119–120</td>
</tr>
<tr>
<td>Silvestri, K.</td>
<td>xiv, 328, 330–331</td>
</tr>
<tr>
<td>Simon, H. A.</td>
<td>8, 50</td>
</tr>
<tr>
<td>Simons, D.</td>
<td>17, 29</td>
</tr>
<tr>
<td>Singer, P.</td>
<td>81</td>
</tr>
<tr>
<td>Skinner, B. F.</td>
<td>9, 288</td>
</tr>
<tr>
<td>Skitka, L. J.</td>
<td>11, 51, 60, 66, 74, 76, 128, 149–150</td>
</tr>
<tr>
<td>Slatcher, R. B.</td>
<td>95, 99</td>
</tr>
<tr>
<td>Smith, E. R.</td>
<td>123, 199</td>
</tr>
<tr>
<td>Smith, J. A.</td>
<td>278, 284</td>
</tr>
<tr>
<td>Smith, T. W.</td>
<td>166</td>
</tr>
<tr>
<td>Smith, V.</td>
<td>8</td>
</tr>
<tr>
<td>Snibbe, A. C.</td>
<td>11</td>
</tr>
<tr>
<td>Sokal, M. M.</td>
<td>6</td>
</tr>
<tr>
<td>Sole, M. L.</td>
<td>308</td>
</tr>
<tr>
<td>Solomon, Z.</td>
<td>66</td>
</tr>
<tr>
<td>Sperry, R. W.</td>
<td>8</td>
</tr>
<tr>
<td>Spiegel, D.</td>
<td>10</td>
</tr>
<tr>
<td>Spitz, R. A.</td>
<td>100</td>
</tr>
<tr>
<td>Spitzer, R. L.</td>
<td>101</td>
</tr>
<tr>
<td>Sprecher, S.</td>
<td>3</td>
</tr>
<tr>
<td>Spring, B.</td>
<td>253–255</td>
</tr>
<tr>
<td>Srivastava, S.</td>
<td>11, 149</td>
</tr>
<tr>
<td>Stanley, J. C.</td>
<td>318, 322, 329</td>
</tr>
<tr>
<td>Stark, D. E.</td>
<td>277</td>
</tr>
<tr>
<td>Steele, K. M.</td>
<td>18</td>
</tr>
<tr>
<td>Steen, T. A.</td>
<td>34</td>
</tr>
<tr>
<td>Stephens, N. M.</td>
<td>12</td>
</tr>
<tr>
<td>Sternberg, R. J.</td>
<td>20, 204</td>
</tr>
<tr>
<td>Stopfer, J. M.</td>
<td>112</td>
</tr>
<tr>
<td>Striepe, M.</td>
<td>154–157</td>
</tr>
<tr>
<td>Stull, A.</td>
<td>57</td>
</tr>
<tr>
<td>Subrahmanym, K.</td>
<td>100, 113, 119</td>
</tr>
<tr>
<td>Sue, S.</td>
<td>206</td>
</tr>
<tr>
<td>Suh, E.</td>
<td>161–162</td>
</tr>
<tr>
<td>Surwit, R. S.</td>
<td>79</td>
</tr>
<tr>
<td>Susskind, J. E.</td>
<td>29</td>
</tr>
<tr>
<td>Swami, V.</td>
<td>108</td>
</tr>
<tr>
<td>Talarico, J. M.</td>
<td>51</td>
</tr>
<tr>
<td>Tanaka, M.</td>
<td>96</td>
</tr>
<tr>
<td>Tatum, C. M.</td>
<td>329</td>
</tr>
<tr>
<td>Taubman, D.</td>
<td>206</td>
</tr>
<tr>
<td>Taubman, S. L.</td>
<td>308</td>
</tr>
<tr>
<td>Taylor, K. M.</td>
<td>68</td>
</tr>
<tr>
<td>Taylor, S.</td>
<td>96</td>
</tr>
<tr>
<td>Tennen, H.</td>
<td>118</td>
</tr>
<tr>
<td>Thioux, M.</td>
<td>277</td>
</tr>
<tr>
<td>Theoemmes, F.</td>
<td>307</td>
</tr>
<tr>
<td>Thomas, L.</td>
<td>180</td>
</tr>
<tr>
<td>Thomason, N.</td>
<td>380</td>
</tr>
<tr>
<td>Thompson, W. F.</td>
<td>18</td>
</tr>
<tr>
<td>Till, J. E.</td>
<td>100</td>
</tr>
<tr>
<td>Tinbergen, N.</td>
<td>8</td>
</tr>
<tr>
<td>Tindale, R. S.</td>
<td>253–255</td>
</tr>
<tr>
<td>Todorov, A.</td>
<td>224–227</td>
</tr>
<tr>
<td>Tomonaga, M.</td>
<td>96</td>
</tr>
<tr>
<td>Tong, S. T.</td>
<td>112</td>
</tr>
<tr>
<td>Toth, S. L.</td>
<td>104–105, 113, 130</td>
</tr>
<tr>
<td>Towle, M. J.</td>
<td>108</td>
</tr>
<tr>
<td>Tran, S.</td>
<td>152–153</td>
</tr>
<tr>
<td>Trentacosta, C. J.</td>
<td>99</td>
</tr>
<tr>
<td>Tromovitch, P.</td>
<td>10</td>
</tr>
<tr>
<td>Tukey, J. W.</td>
<td>344, 348–349, 380</td>
</tr>
<tr>
<td>Turner, K.</td>
<td>32</td>
</tr>
<tr>
<td>Tuten, T. L.</td>
<td>149</td>
</tr>
<tr>
<td>Tversky, A.</td>
<td>8, 29</td>
</tr>
<tr>
<td>Tybur, J. M.</td>
<td>38–39</td>
</tr>
<tr>
<td>Tynes, B.</td>
<td>100, 113, 119</td>
</tr>
<tr>
<td>Ulrich, R. E.</td>
<td>79–80</td>
</tr>
<tr>
<td>Underwood, B. J.</td>
<td>209, 238, 267</td>
</tr>
<tr>
<td>Uttal, D. H.</td>
<td>362–366</td>
</tr>
<tr>
<td>Utz, S.</td>
<td>103, 113</td>
</tr>
<tr>
<td>Name</td>
<td>Page Range</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Valentino, K.</td>
<td>104–105, 113, 130</td>
</tr>
<tr>
<td>van Baaren, R. B.</td>
<td>25</td>
</tr>
<tr>
<td>Van den Bergh, B.</td>
<td>38–39</td>
</tr>
<tr>
<td>Van Der Heide, B.</td>
<td>112</td>
</tr>
<tr>
<td>VanderStoep, S. W.</td>
<td>319</td>
</tr>
<tr>
<td>van Knippenberg, A.</td>
<td>25</td>
</tr>
<tr>
<td>Van Langenhove, L.</td>
<td>278, 284</td>
</tr>
<tr>
<td>Vaughn, L. A.</td>
<td>128</td>
</tr>
<tr>
<td>Vazire, S.</td>
<td>11, 95, 112, 128, 149</td>
</tr>
<tr>
<td>Velez, R.</td>
<td>329</td>
</tr>
<tr>
<td>Vick, S. B.</td>
<td>257–262, 411</td>
</tr>
<tr>
<td>Vietri, J.</td>
<td>163</td>
</tr>
<tr>
<td>Vohs, K. D.</td>
<td>20, 93, 168–169</td>
</tr>
<tr>
<td>von Békésy, G.</td>
<td>8</td>
</tr>
<tr>
<td>Wagenmakers, E. J.</td>
<td>196</td>
</tr>
<tr>
<td>Wakefield, P. C.</td>
<td>346</td>
</tr>
<tr>
<td>Walther, J. B.</td>
<td>112</td>
</tr>
<tr>
<td>Wansink, B.</td>
<td>108</td>
</tr>
<tr>
<td>Warber, K. M.</td>
<td>151</td>
</tr>
<tr>
<td>Warnick, J. E.</td>
<td>8</td>
</tr>
<tr>
<td>Warnick, R.</td>
<td>8</td>
</tr>
<tr>
<td>Wartella, E.</td>
<td>4</td>
</tr>
<tr>
<td>Watson, J. B.</td>
<td>7, 30</td>
</tr>
<tr>
<td>Webb, E. J.</td>
<td>107, 109–111, 126</td>
</tr>
<tr>
<td>Weiner, B.</td>
<td>101</td>
</tr>
<tr>
<td>Weisz, J. R.</td>
<td>200</td>
</tr>
<tr>
<td>Welzel, C.</td>
<td>137</td>
</tr>
<tr>
<td>West, S. G.</td>
<td>307, 310</td>
</tr>
<tr>
<td>Westerman, D.</td>
<td>112</td>
</tr>
<tr>
<td>Whalen, C.</td>
<td>296</td>
</tr>
<tr>
<td>Whitlock, J. L.</td>
<td>100, 120, 121, 128</td>
</tr>
<tr>
<td>Wilkinson, L.</td>
<td>389</td>
</tr>
<tr>
<td>Williams, J. E.</td>
<td>60, 64, 128</td>
</tr>
<tr>
<td>Williams, P. G.</td>
<td>79</td>
</tr>
<tr>
<td>Willingham, B.</td>
<td>99</td>
</tr>
<tr>
<td>Willingham, D. T.</td>
<td>3</td>
</tr>
<tr>
<td>Willis, C. M.</td>
<td>32</td>
</tr>
<tr>
<td>Willis, G. B.</td>
<td>147</td>
</tr>
<tr>
<td>Willis, J.</td>
<td>32, 224–227</td>
</tr>
<tr>
<td>Wilson, G. T.</td>
<td>288</td>
</tr>
<tr>
<td>Wilson, R. E.</td>
<td>110</td>
</tr>
<tr>
<td>Winer, B. J.</td>
<td>233</td>
</tr>
<tr>
<td>Wirtz, D.</td>
<td>16</td>
</tr>
<tr>
<td>Wise, B. M.</td>
<td>103–104, 114–115</td>
</tr>
<tr>
<td>Witte, A. D.</td>
<td>334</td>
</tr>
<tr>
<td>Wundt, W.</td>
<td>6</td>
</tr>
<tr>
<td>Yarbrough, G. L.</td>
<td>8</td>
</tr>
<tr>
<td>Yeaton, W. H.</td>
<td>385</td>
</tr>
<tr>
<td>Yeh, W.</td>
<td>147</td>
</tr>
<tr>
<td>Zaayer, J.</td>
<td>32</td>
</tr>
<tr>
<td>Zayas, V.</td>
<td>xiii, 221</td>
</tr>
<tr>
<td>Zechmeister, J. S.</td>
<td>41, 51, 83</td>
</tr>
<tr>
<td>Zhang, H.</td>
<td>57</td>
</tr>
<tr>
<td>Zimbardo, P. G.</td>
<td>49</td>
</tr>
<tr>
<td>Zivin, K.</td>
<td>229</td>
</tr>
</tbody>
</table>
Subject Index

ABAB (reversal) design, 291–294
ethic issues, 294
methodological issues, 292–294
ABBA counterbalancing
(repeated measures designs), 226–228
Adaptation (desensitization, habituation), 126–127
Additive effects with selection
(as threats to internal validity)
differential statistical regression, 324
history and, 313, 323–324
instrumentation and, 313, 324
maturation and, 313, 322–323
All possible orders
(counterbalancing), 230–231
Alpha. See Level of significance
American Psychiatric Association, 40–42
American Psychological Association (APA)
Committee on Animal Research
and Ethics (CARE), 79
Ethics Code, 13–14, 59–86
history of, 9
website, 9, 59, 85, 419–420, 432–433
Analysis of data, 118–124, 195–204, 342–416. See also Analysis of variance (ANOVA; F-test); Chi-square test of contingency; Confidence intervals; Correlation; Descriptive statistics; Null hypothesis significance testing (NHST); t-test computer-assisted, 345–346 qualitative vs. quantitative, 118–124 stages of, 196, 343–344, 380
Analysis of variance (ANOVA; F-test)
complex designs and, 256, 407–413
defined, 392–398
effect size and, 398–399, 402, 406, 410, 412
independent groups designs
and, 392–398, 407–413
interaction effects and, 407–410
logic of, 393
main effect, 244, 247, 261–262, 407
mean square, 397, 405
mixed designs and, 411–412
null hypothesis, 394–395
omnibus F-test, 393–398
power and, 399–400
repeated measures designs
and, 236, 403–406
simple main effect, 259, 408
single-factor independent groups designs and, 393–398
statistical significance and,
394–397
summary table, 396, 404, 412
table of critical values of F, 440–441
two-factor independent groups designs and, 407–411
ANOVA. See Analysis of variance (ANOVA; F-test)
Anticipation effects, 228
APA Publication Manual. See American Psychological Association (APA)
Application as goal of scientific method, 40, 49, 331–336
Applied behavior analysis, 278, 288–289
Applied research
defined, 49, 305
vs. basic research, 49, 305, 333–336
Archival records (data)
case studies and, 278
coding, 119
content analysis of, 119–120
defined, 110
episodic records, 110
interrupted times series design and, 326
natural treatment and,
110–111
problems and limitations of,
111–112
program evaluation and,
332–333
rationale for, 110
running records, 110
selective deposit, 111–112
selective survival, 112
spurious relationship and, 112
types of, 107, 110
Arithmetic mean (average). See Mean (average)
Association for Psychological Science (APS), 9, 11, 15, 59, 149, 418
website, 9, 418
Attrition. See Subject attrition (loss)
Average. See Mean
Bad experiment. See One-group pretest-posttest design
Balancing. See Control techniques
Bar graphs, 253, 431
Baseline stage, 290–291, 297–299
Basic research
defined, 49
vs. applied, 49, 305, 333–336
Behaviorism, 7, 9
Behavior modification, 288
Behavior therapy, 288–289
Between-subjects design. See Independent groups design
Blind (experimenter, observer), 130, 194–195
Block randomization, 188–189, 224–226

CARE. See Committee on Animal Research and Ethics

Case study method
advantages, 282–284
characteristics, 278–280
defined, 278
disadvantages, 285–287
illustration, 280–281
testimonials and, 287
theory and, 282–283

Categorical data. See Nominal scale

Causal inference (relationship)
case studies and, 285–286
conditions for, 47
correlation and, 47, 169–171, 372
defined, 47
experiments and, 46–47, 181, 186
internal validity and, 181
natural groups designs and, 212–213, 266–269
plausible alternative causes, 47, 181, 187, 309–310
scientific method and, 46–49
Ceiling (and floor) effect, 265–266
Central tendency, 121, 197–198, 351–352. See also Mean (average); Median; Mode
Checklists, 117
Chi-square test of contingency, 167
Cleaning data, 347–348
Clever Hans, 30–32
Closed question (survey), 164
Coding
content analysis and, 119–120
data reduction and, 119
defined, 119
responses to questions, 167
Cognitive psychology, 7
Cohen’s d, 199, 354–355, 387, 402
defined, 199, 354
Cohen’s f, 399
Committee on Animal Research and Ethics (CARE), 79

Communication between experimental groups (threat to internal validity), 314
See also Reporting results; Research report writing
Comparison of two means, 199, 359–362, 386–392, 401–403
Complete repeated measures design, 224–229
Complex (factorial) designs, 243–273
analysis of, 255–262, 407–413
defined, 244
describing effects, 244–255
factorial combination, 244
factorial design, 244
interaction effect and, 244, 257–260, 407–409
main effect and, 244, 247–249, 253–255, 260–262, 409–410
mixed design, 245, 411–412
reporting results of, 413
simple main effect and, 259, 408
testing and, 262–263, 266–269
three-factor, 253–255
two-factor, 245–253, 407–412
Concept, 33–34. See also Construct
Conceptual replication, 208
Confederate, 103

Confidence interval
APA on, 390
correlation and, 373
defined, 203–204, 356, 359, 361
effect size and, 361
for a population parameter, 356
independent groups designs and, 203–204, 359–361, 362–363
interpretation of, 203–204, 359, 361, 365–366
more than two independent means, 362–366
repeated measures designs and, 360–362
reporting, 390, 428–429
single mean and, 356–359

statistical significance and, 203–204, 365–366
two independent group means and, 359–361
two means in repeated measures design and, 360–362
Confidentiality, 64, 66–67, 70–73

Confirmation bias, 29

Confirming what the data reveal, 343. See also Stages of data analysis

Confounding. See also Plausible alternative causes; Threats to internal validity
defined, 48, 185
extraneous variables and, 190–191
internal validity and, 181, 189–195, 309–314

Construct
defined, 33–34
operational definition of, 34–35
scientific method and, 33–35
validity of, 161–162

Contamination (threat to internal validity), 314

Content analysis, 119

Control, 30–33. See also Control condition; Control techniques
Control condition, 32, 181, 194

Control techniques
ABBA counterbalancing, 226–228
balancing, 185–187, 201, 228–233
block randomization, 188–189, 224–226
counterbalancing (defined), 224
double-blind procedure, 194–195
holding conditions constant, 185
Latin square, 232–233
manipulation and, 31–33, 183, 185
placebo control, 194–195
random assignment, 182, 185–187, 201
random starting order with rotation, 232
single-case (small-n) experiment and, 289–291
Controlled-use (planned-use) traces, 108
Convenience sampling, 144
Convergent validity, 179. See also Multimethod approach (to hypothesis testing)
Correlation causality and, 44–46, 169–171, 372
coefficient, 124, 136, 371–372
certainty interval for, 373
defined, 45, 124, 367
illusory, 29
linear trend and, 370
negative, 124, 371
Pearson-Product Moment, 123–124, 372
positive, 124, 371
prediction and, 44–46, 136
scatterplot and, 369–371
scientific method and, 40–41, 44–46
spurious relationships and, 170
Correlation coefficient. See Correlation
Correlational research, 136. See also Correlation
Counterbalancing, 224–233. See also Control techniques
Creating change as goal of scientific method. See Application as goal of scientific method
Critical value. See Statistical significance
ethnocentric bias and, 11–12
Internet surveys and, 149
Cross-sectional design (survey research), 151–152
D bar (mean of difference scores), 361, 388
d (effect size). See Cohen’s d
Data analysis. See Analysis of data
Databases (electronic), 420–421
Data reduction, 119. See also Coding; Descriptive statistics
Debriefing (of participants), 14n, 76–78
Deception (of participants), 14, 73–76, 84
Degrees of freedom (df)
ANOV A summary table and, 396, 404, 408–409, 412
confidence intervals and, 358, 360, 362, 400–401, 406, 410–411
critical values and, 358, 360, 362, 387
defined, 396
F statistic, 397, 405, 408–409
power and, 391, 399–400
t statistic, 358, 360, 362, 387–388
Demand characteristics
controlling, 126–127
defined, 125, 194
double-blind experiments and, 104–105
placebo control group and, 194
Demographic variables, 158–159
Dependent variable (defined), 33, 181. See also Measurement of behavior
Description as goal of scientific method, 40–44
Descriptive statistics, 121–123. See also Central tendency; Measures of dispersion
Desensitization (adaptation), 127
Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 40–42
Difference scores, 360–362
Differential statistical regression, 324. See also Additive effects with selection; Threats to internal validity
Differential transfer, problem of, 237–238
Digital object identifier (DOI), 433
Discontinuity, 328
Discriminant validity, 162
Dispersion of scores. See Measures of dispersion
Disruption effect as threat to internal validity, 315
Double-barreled question (survey), 164–165
Double-blind procedure, 194–195
EAR. See Electronic activated recorder
Effect (magnitude) size (measures)
Cohen’s d, 199, 354–355, 387, 402
Cohen’s f, 399
defined, 198, 354
eta squared (\(\eta^2\)), 235, 398, 410, 412
independent groups designs and, 198–199, 387, 398–399
meta-analysis and, 199–200
power analysis and, 391–392, 399–400
repeated measures designs and, 235–236, 388
reporting, 355, 390, 413, 429
two-factor independent groups design, 410
Electronic activated recorder (EAR), 95
Electronic journals, 421
Element (in survey research), 139
Empirical approach, 5–9
defined, 7
Episodic records (Archival data), 110
Error bars, 357, 365–366
Error variation, 201–202, 235–237, 396–397, 405. See also Mean square error
Estimated standard error of the mean, 353–354. See also Standard error of the mean
Eta squared (\(\eta^2\)), 199, 235, 398, 410–412
defined, 398
Ethical compliance checklist, 85
Ethical issues in psychological research, 13–14, 59–86
animal research and, 78–80
APA Ethics Code, 13–14, 59–86
Committee on Animal Research and Ethics (CARE), 79
compliance checklist, 85, 435
confidentiality, 64, 66–67, 70–73
debriefing, 14n, 76–78
deception, 14, 73–76, 84
decision making, 59–60, 83–85
disguised participant observation and, 101, 128
informed consent, 67–76
institutional review board (IRB), 60–62
Internet and, 11, 59–60, 78
minimal risk, 65
observation and, 127–129
plagiarism, 82–83
privacy, 70–73
reporting results and, 80–83
risk (determining), 63–67
risk/benefit ratio, 62–63
single-case designs and, 294
steps for ethical compliance, 84–85, 435
surveys and, 137, 150
unobtrusive measures and, 129
Ethnocentric bias, 11–12
Ethology, 8, 98
Event sampling, 96
Expectancy (experimenter/observer) effects, 129–130, 194
Experiment
analysis of, 195–205, 346–373, 380–413
causal inference and, 46–49, 179–180
defined, 31–33, 46–47
external validity of, 205–209, 299–300, 316
field, 105–106, 206–209
internal validity of, 47–48, 189, 309–314
lab vs. natural setting, 305–306
logic of, 180–181
quasi-, 306, 316–331
sensitivity of, 221, 384
single-case (small-n), 288–300
society’s, 334–336
ture, 186–187, 306–307
Experimental analysis of behavior, 278, 288
Experimental condition (treatment), 31–33, 186–187
Experimenter (observer) effects, 106–107, 125–127, 129–130, 194–195. See also Reactivity
defined, 194
Explanation as goal of scientific method, 46–49, 179.
See also Causal inference; Experimental methods
External validity
case study and, 287
defined, 94, 205
establishing, 205–209, 316
experiments, of, 205–209, 316
interactions and, 263–265
laboratory studies and, 305
replication and, 205–209, 316
sampling and, 94–97
single-case (small-n) experimental design and, 299–300
threats to, 305, 316
Extraneous variables, 190–191
Extreme score. See Outlier
f (effect size). See Cohen’s f
F-distribution, critical values of, 440–441
F-test (defined), 393–394. See also Analysis of variance (ANOVA)
Facebook, 110, 112
Factorial combination (design), 244. See also Complex designs
Field experiment, 105–106, 206–209
Field notes, 113
Figures. See Graphs
Filter question (survey), 166
Floor (ceiling) effect, 265–266
Free-response question (survey), 164
Frequency (measure of behavior), 114, 117, 290
Funnel question (survey), 166
Generality of research findings, 42, 48–49, 284. See also External validity
Getting to know the data, 343.
See also Stages of data analysis
Graphs (graphing)
bar, 253, 431
constructing, 430–431
line, 253, 432
Group methodology, 42, 277, 284. See also Nomothetic approach
Habitation (adaptation), 126
Hawthorne effect, 315–316.
See also Novelty effects
History (threat to internal validity), 310
H0. See Null hypothesis (H0)
Holding conditions constant. See Control techniques
Hypothesis(es). See also Null hypothesis significance testing (NHST)
circular, 40
defined, 21, 38
developing, 18–21
multimethod approach and, 23, 179
null, 202, 381, 394
scientific theories and, 39
testability, 40
IACUC. See Institutional Animal Care and Use Committee
Idiographic approach, 29, 43–44, 284. See also Case study method
Illusory correlation, 29
Incomplete repeated measures design, 228–233
Independent groups design (types)
complex, 244
defined, 182
intact groups, 189–190, 313
matched groups, 209–211
mixed design and, 411–412
natural groups, 211–213
random groups, 181–187
single-factor, 182, 393
two-factor, 244–245, 407
three-factor, 253–255

Independent variable
confounding and, 48, 185, 309–314
defined, 32
individual differences, 211
natural groups and, 211–213
relevant vs. irrelevant, 265
selected, 32n, 211
single-case (small-n) experiment and, 289–291

Indirect observation. See Observation; Unobtrusive measures

Individual differences (subject) variable
defined, 32n, 211
natural groups design and, 211–213
relevant vs. irrelevant, 265
selected, 32n, 211
single-case (small-n) experiment and, 289–291

Inferential statistics, 201. See also Null hypothesis significance testing (NHST)

Informed consent, 67–76. See also Ethical issues in psychological research

Institutional Animal Care and Use Committee (IACUC), 60–62

Institutional Review Board (IRB), 60–62

Instrumentation (threat to internal validity), 310–311

Instruments, 36–38. See also Rating scales; Questionnaires

Intact groups, testing, 189–190, 313. See also Threats to internal validity

Interaction effect, 244, 247, 250, 255. See also Analysis of variance (ANOVA); Complex designs
ceiling (floor) effects and, 265–266
defined, 250
describing, 251–255
external validity and, 263–265
interpreting, 262–266
relevant variables and, 264–265
subtraction method and, 253
two-way (factor), 250–253

Internal validity. See also Confounding; Control techniques
defined, 181
double-blind procedure and, 194–195
experiments, of, 47–48, 189, 223–224, 309–314
extraneous variables and, 190–191
intact groups and, 189–190, 313
placebo control, 194–195
quasi-experiments, of, 316, 325
threats to, 189–195, 223–224, 309–313
true vs. quasi-experiments, 309–313

Internet daily diary, 118

Internet (online) research
citing information from, 432–433
databases, 420–421
discussion groups (listservs), 420
electronic journals, 421
ethical issues and, 11, 60, 69, 71, 76, 78, 137, 150
observation and, 100, 102–103, 110, 112
recording behavior and, 110, 112, 119
scientific psychology and, 10–11
searching scientific literature, 426
subject (participant) recruitment, 10–11, 149–150
surveys and, 148–151
website for participation, 11

Interobserver reliability, 123–124. See also Observer reliability

Interrupted time-series design
external validity of, 330
internal validity of, 329–331
simple, 326
with nonequivalent control group, 330

Interval scale, 115–117

Intervening variables, 52–53

Interviewer bias, 146–147

Interviews. See Personal interviews

Intuition, role of, in science, 29–30

IRB. See Institutional Review Board

Irrelevant independent variable, 265

Journals (psychology). See also Communication in psychology
acceptance (rejection) rate, 418
citing information from, 82–83, 425, 432–433
electronic, 421
searching, 426

Latin Square (counterbalancing), 232–233

Level of significance, 202, 381. See also Null hypothesis significance testing (NHST)

Line graphs, 253, 432

Linear trend, 370. See also Correlation

Loaded question (survey), 164–165

Local history effect, 323–324. See also Additive effects with selection; Threats to internal validity

Longitudinal design (survey research), 154–157

Mail survey, 145–146

Main effect, 244, 247. See also Analysis of variance (ANOVA); Complex design

Manipulation (of independent variable), 31–32, 183–185, 187, 306–307. See also Experiment

Margin of error, 357

Matched groups design, 209–211

Maturation (threat to internal validity), 310
Mean (average), 121, 197–198, 352
Mean square error. See Analysis of variance (ANOVA)
Measurement of behavior.
See also Recording behavior
accuracy, 36
comprehensive vs. selected aspects, 112–118
electronic, 95, 99, 117–118
instruments, 36–37
physical vs. psychological, 37–38
precision, 36
qualitative vs. quantitative, 44, 118–123
questionnaires, 158
ratings, 115–117
reactivity and, 100, 106–107
relative frequency, 121
reliability of, 38, 123–124
scales, 115–117
scientific method and, 36–38
self-report, 160
unobtrusive (nonreactive), 106–112
validity of, 38
variability, 122, 352–354
Measurement scales, 115–117.
See also Measurement of behavior
Measures of central tendency, 121, 351–352. See also Mean; Median; Mode
Measures of dispersion (variability), 197–198, 352–353. See also Range; Standard deviation
Mechanical subject loss, 191.
See also Subject attrition (loss)
Media, research findings in, 17–18
Median, 351–352. See also Central tendency
Mediator variable, 170–171
Meta-analysis, 199–200, 355, 429
Milgram experiment, 74–75, 84
Minimal risk, 65
Mixed design, 245, 411–412
Mode, 351. See also Central tendency
Moderator variable, 170–171
Multimethod approach (to hypothesis testing), 23, 179
Multiple-baseline design across behaviors, 296
across individuals (subjects), 296
across situations, 294
methodological issues, 297
N = 1 designs. See Single-case (small-n) experimental designs
Narrative records
analysis of, 118–120
coding, 119
data reduction, 119
defined, 113
field notes, 113
Natural groups design
causal inferences and, 212–213
complex design and, 266–269
defined, 212
individual differences variable and, 211
interaction effect and, 266–269
Natural groups variable. See Individual differences (subject) variable
Natural treatment, 110–111, 327
Naturalistic observation, 99–100
Natural-use traces, 107–108
Negative correlation, 124, 371. See also Correlation
NHST. See Null hypothesis significance testing (NHST)
Nobel Prize, 8
Nominal scale, 115–116, 167
Nomothetic approach, 42, 277, 284
Noncomparable successive samples, 154
Nonequivalent control group design
defined, 318–319
external validity and, 325–326
illustration of, 319–325
threats to internal invalidity, 321–325
Nonprobability sampling, 141, 144
Nonreactive measures. See Unobtrusive measures
Novelty effects (threats to internal validity), 315–316
Null hypothesis (H0) (defined), 202, 381, 394. See also Null hypothesis significance testing (NHST) defined, 381
Null hypothesis significance testing (NHST). See also t-test, F-test
alpha and, 202, 381
comparing more than two means, 392–413
critical values and, 439–441
defined, 202, 380–383
effect size and, 384–386
interpreting results of, 202–205, 381–383, 389
level of significance, 202, 381
power and, 384–386, 391–392
reporting results of, 390
sensitivity and, 384–385
statistical significance and, 202, 381, 389
Observation
bias, 129–130
blind, 130, 194–195
comprehensive vs. selected records, 112
control and, 30–33
demand characteristics and, 125
direct vs. indirect, 97, 106
electronic devices and, 95, 117–118, 122
ethical issues, 103, 127–129
field experiments, 105–106
influence of observer, 101–102, 106–107, 125–127
Internet and, 102–103
intervention and, 100–106
methods, classification of, 97
naturalistic, 99
participant, 101–102
reactivity and, 101, 106–107, 125–127
reliability of, 123–124
sampling and, 94–97
scientific vs. nonscientific, 28, 93
structured, 103–105
unobtrusive (nonreactive), 116–112
Observer (experimenter) bias, 129–130
Observer reliability
defined, 123
measures of, 123–124
scientif ic reports and, 35–36
Omnibus F-test, 394. See also Analysis of variance (ANOVA)
One-group pretest-posttest design, 317–318
Online research. See Internet
Operational definition
communication and, 35
criticisms of, 34–35
defined, 34
Oral presentations, 434–435
Ordinal scale (measure), 115–117
Outlier, 347
Parameter, 356, 359
Parsimony (rule of), 53
Partial replications, 208
Participant observation, 101–103
Path analysis, 170
Pearson Product-Moment Correlation Coefficient, 124, 136, 371–372. See also Correlation
Peer review, 418
Percentage agreement (of observers), 123
Personal interview, 146–147
Physical traces (unobtrusive measures), 107–109
Placebo control group, 194–195
Plagiarism, 82–83
Plausible alternative causes (confounds), 47–48, 309–310. See also Threats to internal validity
Population
defined, 139
parameter, 356
sample vs. population, 140–144, 202
sampling and, 140–144
Positive correlation, 124, 371. See also Correlation
Power (statistical)
defined, 384
experimental sensitivity and, 384–386
factors affecting, 384–385
sample size and, 384
Practice effects (repeated measures designs), 222–233
Precision of measurement. See Measurement of behavior
Prediction as goal of scientif ic method, 44–46
Prediction (statistical). See Correlation
Privacy, 70–73
Probability sampling, 140–143
defined, 141
Products (unobtrusive measures), 108
Program evaluation, 306, 331–336
Psychophysical methods (psychophysics), 222
PsycINFO, 426
Publication (of research findings), 80–85, 418–420, 434
Publication credit, 81–82, 424
Publication Manual (APA). See American Psychological Association (APA)
Qualitative research
analysis of data, 118–120
coding and, 119
content analysis and, 119–120
data reduction, 119
defined, 44
narrative records, 113–114
vs. quantitative research, 44
Quantitative research. See also Analysis of data
analysis of data, 120–124
defined, 44
measurement scales, 115–117
vs. qualitative research, 44
Quasi-experiments
analysis of, 329
defined, 317
external validity and, 325–326, 330
internal validity and, 321–325, 329–331
interrupted time series (simple), 326–330
nonequivalent control group, 318–326
threats to internal validity, 309–313
time series with nonequivalent control group, 330–331
vs. true experiments, 306, 317
Questionnaire. See also Survey research
accuracy and precision of, 158–160
analysis of responses, 167
constructing, steps in, 162–163
defined, 158
demographic variables and, 158–159
effective wording of questions (guidelines), 163–166
ordering of questions, 166–167
preferences and attitudes, 160
reliability of, 160–162
self-reports and, 160–162
validity of, 160–162
wording of questions in, 163–166
Random assignment
balancing and, 182, 185–187, 201
block randomization and, 188–189
defined, 182
inferential statistics and, 201, 393
intact groups, of, 189–190
natural settings and, 307–309
quasi-experiments and, 317
random groups design and, 182
ture experiments and, 307
Random digit dialing, 147–148
Random groups design. See also
 Independent groups designs
 analysis of, 195–204
 defined, 182
 example of, 182–187
 external validity and, 205–209
 independent groups and, 182
 internal validity and, 189–195
Random numbers, table of, 438
Random sampling (selection), 142–143. See also
 Representativeness
 (of samples)
Random starting order with rotation (counterbalancing), 232
Range, 352. See also Descriptive
 statistics; Variability
 (measures)
Rating scale, 115–117. See also
 Measurement of behavior
Ratio scale (measure), 115–117
Reactivity, 101, 106–107, 125–127. See also
 Observation;
 Unobtrusive (nonreactive) methods
Recording behavior. See also
 Measurement of behavior
 classification of observational
 methods, 97
 comprehensive records, 112–114
 electronic records, 95, 117–118
 field notes, 113
 frequency, 114, 117, 290
 goals of, 112
 narrative records, 113
 relative frequency, 121
 selected records, 112–118
Regression (statistical; threat to
 internal validity), 311–312
 differential statistical, 324
Relative frequency, 121
Relevant independent variable, 264–265
Reliability
 defined, 38
 experimental, 38, 196
 measurement, of, 38
 observer, 123–124
 replication and, 196
 test-retest, 160
 self-report measures and, 160–161
Repeated measures designs
 analysis of, 233–237
 complete, 224–228
 defined, 220
 differential transfer, problem of, 237–238
 effect size and, 235
 error variation, 235–237
 incomplete, 224, 228–233
 mixed designs and, 411–412
 practice effects and, 222–233
 reasons for using, 220–222
 repeated measurements and, 222
 sensitivity of, 221, 236
 t-test for, 387–388
Replication
 conceptual, 208
 defined, 196
 external validity and, 208, 316
 partial, 208
Report writing. See Research
 report writing
Reporting results (and scientific
 method), 35–36. See also
 Research report writing
Representativeness (of sample)
 convenience sample and, 144
 defined, 140
 event sampling and, 96
 external validity and, 94
 probability sampling and, 141–143
 random sampling, 142–143
 situation sampling, 96–97
 survey research and, 138, 140
 time sampling and, 94–96
Research (process)
 applied vs. basic, 49, 305, 333–336
 getting started in, 18
 multimethod approach, 23, 179
 qualitative vs. quantitative, 44
 steps of, 22
 thinking like a researcher, 14–17
Research designs/methods
 (types of)
 case study, 278
 complex, 244
 correlational, 136, 167, 169–171
 experimental, 31–33, 179–181
 field experiment, 105–106, 206–209
 independent groups, 182
 matched groups, 209–211
 mixed, 245, 411–412
 natural groups, 211–213, 266–269
 observational, 97–106
 psychophysical, 222
 quasi-experimental, 317–331
 random groups, 181–187
 repeated measures, 220, 224
 single-case (small-n)
 experimental, 289–297
 survey research, 144–157
 unobtrusive (nonreactive), 106–112
Research proposals, 435–436
Research report writing, 418–436. See also Reporting results
 APA Publication Manual. See
 American Psychological Association (APA)
 analysis story, 344–345
 effective writing guidelines, 421–423
 ethical issues, 80–85, 434
 references (citing), 432–433
 structure of report, 423–432
 tips on writing, 419, 424–429, 432
Residual variation, 403–406
Response bias, 165
Response rate bias, 145
Results, analysis of. See Analysis
 of data
Results, reporting. See Research
 report writing
Reversal design, 291. See also
 ABAB design
Risk (to participants), 63–67
Risk/benefit ratio, 62–63
Rule of parsimony, 53
Running records
 (archival data), 110
Sample (defined), 140. See also Samples (types); Sampling
Sample size. See also Degrees of freedom (df)
Internet and, 149
power and, 384–385
Sampling
basic terms of, 138–144
biased, 140, 144
convenience, 144
element, 139
event, 96
frame, 139
Internet research and, 10–11, 149–150
noncomparable successive, 154
nonprobability, 141, 144
population and, 139
probability, 140–143
random (simple), 142
representativeness and, 138, 140
situation, 96
stratified random, 143
subject, 97
successive independent, 152
time, 94–96
Sampling frame in survey research, 139
Scaling, 165. See also Rating scales
Scatterplot, 369. See also Correlation
Scientific method
characteristics of, 3–5, 14–18, 28–54
clinical psychology and, 15
communication and, 17–18, 35–36
concepts and, 33–35
confirmation bias and, 29
defined, 4–5
empirical approach and, 5–9
goals of, 40–49
hypothesis testing, 19, 38–40
instruments, 36–37
intuition and, 29
nonscientific vs. scientific approaches, 28
qualitative vs. quantitative analysis, 44
theory construction and testing, 50–54
Scientific psychology
evidence and, 3–9, 14–18
historical context, 6–9
moral context, 13–14
Nobel Prize and, 8
social-cultural context (Zeitgeist), 9–12
Scope of theory, 50–51
Selected independent variable, 32n. See also Individual differences variable
Selected orders
(counterbalancing), 232–233
Selection bias (sampling), 140
Selection (threat to internal validity), 312–313. See also Additive effects with selection
Selective deposit (archival records), 111
Selective subject loss, 191. See also Subject attrition (loss)
Selective survival (archival records), 112
Self-report measures, 160. See also Questionnaires
Sensitivity (experimental), 221, 384–386
Sesame Street, 306
Significance, 388. See also Statistical significance
Simple interrupted time-series design, 326–330
Simple main effect, 259, 408. See also Main effect
Simple random sampling (random selection), 142
Single-case research. See Case study method and Single-case (small n) experiment
Single-case (small-n) experiment
ABAB design, 291–294
advantages of, 290
analysis of, 288
baseline stage, 290–291
characteristics of, 289–291
control and, 288
defined, 290
external validity and, 299–300
multiple-baseline designs, 294–297
problems and limitations of, 297–300
reversal design, 291–294
vs. multiple group designs, 277, 284, 290
Single-factor independent groups design, 393–398
Single-case (small-n) experiment
ABAB design, 291–294
advantages of, 290
analysis of, 288
baseline stage, 290–291
characteristics of, 289–291
control and, 288
defined, 290
external validity and, 299–300
multiple-baseline designs, 294–297
problems and limitations of, 297–300
reversal design, 291–294
vs. multiple group designs, 277, 284, 290
Single-factor independent groups design, 393–398
Situation sampling, 96
Social desirability, 168
Sports Illustrated Jinx, xiv, 312
Spurious relationship (between variables), 112, 169–171. See also Causal inference defined, 170
Stage-of-practice effects. See Practice effects
Stages of data analysis, 196, 343–344, 380
Standard deviation. See also Measures of dispersion
defined, 352–353
estimated standard error of the mean and, 353–354
Standard error of the mean, 353–354
Statistical regression. See Regression (statistical)
Statistical significance. See also Null hypothesis significance testing (NHST)
defined, 202, 381
critical values, 439–441
defined, 202, 381
interpretation of, 202–205, 381–383, 389
level of significance, 202, 381
power and, 384–386
scientific or practical significance and, 388–389
tests of, 202–203, 380–383. See also t-test and F-test
Statistical tests. See Inferential statistics; Null hypothesis significance testing (NHST); see also t-test and F-test
Statistically significant (defined), 202
Subject Index

Stem-and-leaf display, 348–350
Stratified random sampling, 143
Structured observation, 103–105
Subject attrition (loss), 191–194, 312
Subject loss. See Subject attrition (loss)
Subject selection threat to internal validity. See Selection threat to internal validity
Subject variable. See Individual differences variable
Subtraction method, 253
Successive independent samples design (survey research), 152–154
Summarizing the data, 343. See also Stages of data analysis
Survey research bias in, 140, 145, 146
characteristics of, 138
correlational research and, 136, 167, 169–171
cross-sectional design, 151–152
ethical issues, 137, 150
Internet surveys, 148–150
longitudinal design, 154–157
mail surveys, 145–146
margin of error and, 357
personal interviews, 146–147
questionnaires as instruments, 158–160
questionnaire construction and, 162–167
random digit dialing, 147–148
reactivity and, 168–169
reliability of, 160–162
sampling and, 138–144
social desirability and, 168
successive independent samples design, 152–154
telephone interviews, 147–148
uses of, 136–137
validity of, 160–162
Systematic variation, sources of, 256. See also Analysis of variance (ANOVA)
Telephone survey, 147–148
Testimonials, evaluating, 287
Testing (threat to internal validity), 310
Test-test reliability, 160
Tests of statistical significance. See Null hypothesis significance testing (NHST); see also t-test and F-test
Theory
case study and, 282–283
defined, 50–51
evaluating, 53–54
experiments and, 179–180, 266–269
falsifying, 53
functions of, 51
hypotheses and, 39
intervening variables and, 51–54
precision of, 53
scope, 50–51
testing, 53–54
Threats to internal validity. See also Control techniques additive effects with selection, 303
contamination, 314
defined, 189, 309–310
differential statistical regression, 324
history, 310
instrumentation, 310–311
intact groups (testing), 189–190, 313
local history effect, 323–324
maturation, 310
novelty effects, 315
practice effects and, 222–224
regression (statistical), 311
selection, 312–313
subject attrition (loss), 191–194, 312
testing, 310
treatment stage vs. baseline stage, 290–291
True experiment characteristics, 307
obstacles to conducting, 309
threats to internal validity and, 309–313
uncontrollable problems, 314–316
t-test
comparison of two means and, 202, 386–388
independent groups, for, 387
repeated measures (within subjects), for, 387–388
table of critical values, 439
Type I error, 204–205, 383
Type II error, 204–205, 383
Understanding as goal of scientific method. See Explanation as goal of scientific method
Unobtrusive (nonreactive) methods
archival records, 107, 109–112
defined, 106
ethical issues, 129
physical traces, 107–109
products, 108
reactivity and, 106
use traces, 107
validity of, 108–109, 111–112
Use traces (unobtrusive measures), 107
Utilitarianism, 81
Validity (types)
construct, 161–162
convergent, 162, 179
defined, 38
discriminant
external, 162
internal, 181, 189
Variability (measures). See also Error variation; Measures of dispersion
range, 352
standard deviation, 121, 352–353

Variables (types)
demographic, 158–159
dependent, 32, 181
extraneous, 190–191
independent, 32, 181
individual differences, 32n, 211–213
intervening, 52–53
irrelevant independent, 264–265
manipulated, 31–32, 183–185
matching, 210
mediator, 170–171
moderator, 170–171
natural groups. See individual differences
relevant independent, 264–265
selected, 32n
subject. See individual differences
Verbal reports, 160–162
Waiting list control group, 309
Within-subjects designs. See Repeated measures designs
Writing, effective guidelines for, 421–423. See also Research report writing
Zeitgeist, 9
Zero point, 116